

Pitch pRTI™ USER’S GUIDE

v 5.3

Contents

1 INTRODUCTION 5

1.1 ABOUT THIS DOCUMENT 5
1.2 ABOUT PITCH TECHNOLOGIES 6
1.3 ABOUT IEEE 1516 HLA 6
1.4 ABOUT THE RUN TIME INFRASTRUCTURE 7
1.5 ABOUT PITCH PRTI™ 7
1.6 PRODUCT LICENSING STRUCTURE 8

2 PREPARING FOR PITCH PRTI™ 9

2.1 A TOPOLOGY AND COMPONENTS EXAMPLE 9
2.2 THE CENTRAL RTI COMPONENT (CRC) 10
2.3 THE FEDERATES 10
2.4 THE LOCAL RTI COMPONENT (LRC) 10
2.5 FOM FILES 10
2.6 THE COMPUTERS 11
2.7 NETWORKING 12
2.8 POWERFUL USER INTERFACES 12

3 INSTALLING PITCH PRTI™ 16

3.1 WINDOWS INSTALLATION 16
3.2 ACTIVATING LICENSES 22
3.3 VERIFYING THE WINDOWS INSTALLATION 24
3.4 LINUX INSTALLATION 26
3.5 VERIFYING THE LINUX INSTALLATION 26
3.6 INSTALLING ON OTHER PLATFORMS 28

4 UNINSTALLING PITCH PRTI™ 29

4.1 UNINSTALLING ON WINDOWS 29
4.2 UNINSTALLING ON LINUX 29
4.3 UNINSTALLING ON OTHER PLATFORMS 29

5 RUNNING PITCH PRTI™ 30

5.1 GRAPHICAL USER INTERFACES OVERVIEW 30
5.2 USING THE GRAPHICAL USER INTERFACE 30
5.3 USING THE COMMAND LINE INTERFACE 42

6 RUNNING PITCH PRTI™ IN SERVICE-MODE 43

6.1 INTRODUCTION 43
6.2 LIMITATIONS 43
6.3 INSTALLING THE SERVICE 43

7 USING PITCH WEB VIEW 45

7.1 INTRODUCTION 45

8 PITCH CONTROL CENTER 47

8.1 OVERVIEW 47
8.2 FRIENDLY ERRORS 47
8.3 LRC MONITORING 48

9 DEVELOPING WITH PITCH PRTI™ 53

9.1 MICROSOFT VISUAL STUDIO 2010 ON WINDOWS 53
9.2 OPTIMIZATION FLAGS FOR VISUAL STUDIO RELEASE BUILDS 58
9.3 RUNNING FEDERATES FROM THE VISUAL STUDIO IDE 58
9.4 OTHER MICROSOFT VISUAL STUDIO VERSIONS ON WINDOWS 59

9.5 GCC ON LINUX 59
9.6 CUSTOM SIGNAL HANDLERS IN C++ 60
9.7 JAVA 60

10 WRITING A SIMPLE FEDERATE IN C++ 61

10.1 THE FEDERATEAMBASSADOR AND THE RTIAMBASSADOR 61
10.2 CONNECTING TO THE RTI 62
10.3 THE FEDERATION OBJECT MODEL 62
10.4 PUBLISHING AND SUBSCRIBING TO INFORMATION 63
10.5 SENDING INTERACTIONS 63
10.6 RECEIVING INTERACTIONS 64
10.7 CONCLUSIONS 64

11 WRITING A SIMPLE FEDERATE IN JAVA 65

11.1 THE FEDERATEAMBASSADOR AND THE RTIAMBASSADOR 65
11.2 CONNECTING TO THE RTI 66
11.3 THE FEDERATION OBJECT MODEL 66
11.4 PUBLISHING AND SUBSCRIBING TO INFORMATION 67
11.5 SENDING INTERACTIONS 67
11.6 RECEIVING INTERACTIONS 68
11.7 CONCLUSIONS 68

12 TICK AND PROCESS MODELS 70

12.1 SETTING THE PROCESS MODEL 70
12.2 PRACTICAL GUIDELINES 70
12.3 EXPLANATION OF PROCESS MODELS 70

13 DEBUGGING AND TRACING 72

13.1 OVERVIEW 72
13.2 ENABLING THE TRACING 73
13.3 FORMAT OF THE TRACE LOG 73
13.4 A SAMPLE TRACE LOG 73

14 NETWORKING 75

14.1 WHEN TO RECONFIGURE NETWORKING 75
14.2 OVERVIEW OF PITCH PRTI™ COMMUNICATION 76
14.3 USING MULTICAST 77
14.4 OPERATING OVER FIREWALLS 77
14.5 NETWORK SETTINGS 78
14.6 PITCH PRTI™ AND PITCH BOOSTER™ 79

15 ADVANCED PITCH PRTI™ NETWORK PERFORMANCE TUNING 82

15.1 INTRODUCTION 82
15.2 FEDERATE TUNING 82
15.3 SETTING TUNING PARAMETERS 83
15.4 PITCH PRTI™ TUNING ALGORITHMS 87

16 CONFIGURATION REFERENCE 91

16.1 SETTINGS FOR THE CENTRAL RTI COMPONENT 91
16.2 SETTINGS FOR THE LOCAL RTI COMPONENT 94
16.3 OLDER APIS SETTINGS 105
16.4 OVERRIDES SETTINGS 107
16.5 LRC JVM SETTINGS FOR C++ FEDERATES 108

17 USING FEDERATES DEVELOPED FOR LEGACY HLA VERSIONS 109

17.1 C++ LIBRARIES 109
17.2 HEADERS 109

17.3 JAVA LIBRARIES 110
17.4 TIME CLASSES 110
17.5 DATA DISTRIBUTION MANAGEMENT (DDM) SERVICES 112
17.6 QUICK REFERENCE 113

18 COMMON ERRORS 114

18.1 COMPILING C++ FEDERATES 114
18.2 COMPILING JAVA FEDERATES 115
18.3 STARTING PITCH PRTI™ 115
18.4 RUNNING C++ FEDERATES 116
18.5 FEDERATION STARTUP 117
18.6 GET HANDLES AND REGISTER OBJECT INSTANCES 118
18.7 UPDATES AND INTERACTIONS 120
18.8 TIME MANAGEMENT 121
18.9 MISCELLANEOUS 121

Pitch pRTI™ User’s Guide Introduction

Copyright  2016 Pitch Technologies Page 5[122]
July 2016

1 Introduction

1.1 About This Document
Pitch pRTI™ and Pitch Visual OMT™ are registered trademarks belonging to Pitch
Technologies AB. All rights reserved.

This document provides information about how to install, run, troubleshoot and
optimize Pitch pRTI™, the leading commercial RTI for the HLA. The acronym RTI
stands for Run-Time Infrastructure, pRTI™ stands for portable RTI and HLA stands
for High Level Architecture, which is a standard for simulation interoperability.

These are the main audiences for this document:

 Developers of HLA compliant simulation system who wish to use Pitch
pRTI™ in their development projects.

 IT Staff responsible for setting up and maintaining HLA based simulation
applications in their IT environment. This group can concentrate on chapters
2, 3 and 5.

 Technical specialist who wish to evaluate Pitch pRTI™ as an interoperability
infrastructure for their projects or products.

The outline of the document is as follows:

 This introduction gives an initial overview of HLA and Pitch pRTI™.

 Preparing for Pitch pRTI™ describes the set-up you need to run and develop
for pRTI™, such as networking, hardware, software and participating
systems.

 Installing Pitch pRTI™ describes how to install pRTI™ on various platforms
such as Windows, Linux etc.

 Running Pitch pRTI™ describes how to run and monitor your simulations
using a graphical and command line interface.

 Running Pitch pRTI™ In Service-Mode describes how to install and setup the
pRTI™ Central RTI Component to run as a service on Windows and Linux.

 Using Pitch Web describes how to access the Pitch pRTI™ using web
browsers.

 Developing with Pitch pRTI™ shows how to set up your development
environment to be able to build federates.

 Writing a simple federate in C++ contains an example federate complete
with C++ source code including instructions on how to compile and run the
federate.

 Writing a Simple Federate in Java contains an example federate complete
with Java source code including instructions on how to compile and run the
federate.

 Tick and Process Model describes how the RTI and the federate share the
CPU and how to achieve optimal performance and responsiveness.

Pitch pRTI™ User’s Guide Introduction

Copyright  2016 Pitch Technologies Page 6[122]
July 2016

 Debugging and Tracing describes the features of pRTI™ to assist you in
debugging your federation.

 Networking describes networking functionality and tuning for pRTI™.

 Advanced Pitch pRTI™ Network Performance Tuning describes the
advanced network tuning functionality available in pRTI™.

 Configuration Reference contains a summary of all the configuration
switches that can be used with pRTI™.

 Common errors lists common errors and how to resolve them.

1.2 About Pitch Technologies
Pitch Technologies is the world leading supplier of interoperability enabling
products for simulation and training. Based on open international standards, Pitch
provides COTS products for developing and deploying distributed simulations
according to the High Level Architecture (HLA). Our products Pitch pRTI™, Pitch
Visual OMT™, Pitch Commander™, Pitch Recorder™, Pitch Developer Studio™,
Pitch Booster™, Pitch Extender™ and Pitch DIS Adapter™ are used in a variety of
both civilian and defense simulations world-wide to support training, acquisition
and analysis. Furthermore, many of the simulation industry’s vendors use the
Pitch products to HLA enable their solutions.

1.3 About IEEE 1516 HLA
The HLA standard was initially defined in 1995 based on experiences from earlier
simulation interoperability standards. The idea was to create a standard that
could embrace many domains and types of simulation. Although earlier standards
existed they were limited to specific simulation domains or did not provide
services for managing time in simulations.

The HLA standard was developed in several steps from 1.0 up to the HLA 1.3
standard. After this step it was decided to broaden the usage outside the US
defense, so the current version of the standard is established as an open and
international IEEE standard: the IEEE 1516 HLA standard. The IEEE 1516 HLA
standard is the intended goal also for the US Department of Defense simulations.

IEEE accepted the standard in 2000. Since then the development of tools and RTI:s
for this standard has started. The first complete RTI implementation, Pitch pRTI™
1516, was released in December 2001. Other HLA tools available include object
model tools such as Pitch Visual OMT™ and HLA data loggers such as Pitch
Recorder™. Today there is a wide range of tools from several vendors available on
the market.

Starting with version 2.1, Pitch pRTI™ 1516 was based on the IEEE standards and
the DMSO interpretations version 2.

Starting with version 4.2, Pitch pRTI™ was based on the latest improved version of
the HLA standard, IEEE 1516-2010, also known as HLA Evolved. You may read
more about HLA Evolved in the “Papers” section on our web site www.pitch.se.

The IEEE 1516 standard is in active use in Europe, Asia and the US. Worth noting is
the acceptance by the non-defense community. Commercial applications based
on the IEEE 1516 standard have already been completed and delivered to the end
user.

Pitch pRTI™ User’s Guide Introduction

Copyright  2016 Pitch Technologies Page 7[122]
July 2016

HLA lets you interconnect simulations, devices and humans in a common
federation. HLA builds on composability, letting you construct simulations from
pre-built components.

Each computer based simulation system is called a federate and the group of
interoperating systems is called a federation.

The HLA standard consists of three parts:

 The HLA rules that the entire federation and federates have to follow.

 The Object Model Template, which is used to describe object models for
federates and federations. The leading graphical tool for working which such
object models is Pitch Visual OMT™ from Pitch Technologies.

 The HLA Interface Specification, which describes the functionality that the
RTI has to provide. .

To be able to successfully develop HLA compliant applications it is necessary to
gain a deeper understanding of HLA than this document provides. We
recommend reading the HLA Tutorial, available for free from www.pitch.se or
Hands-On HLA training available from Pitch. You may also want to study the
FEDEP/DSEEP, which is the recommended process for developing federations.

1.4 About the Run Time Infrastructure
The Run Time Infrastructure is responsible for the information exchange during
the execution. It will let federates join and resign, declare their intent to publish
information, send information about objects, attributes and interactions,
synchronize time, etc. Note that the HLA is not the RTI but it specifies that there
must be an RTI with a standardized interface. The interface is specified in the HLA
standard, but the implementation of the interface specification is left to the RTI
developer.

1.5 About Pitch pRTI™

The product Pitch pRTI™ is an implementation of the IEEE 1516 Interface
Specification. It lets you integrate simulations in an HLA compliant way. You can
mix different operating systems and programming languages. The main
advantages of Pitch pRTI™ are:

 It is complete, certified and HLA compliant. Pitch pRTI™ is a complete
implementation of the HLA specification.

 It offers excellent performance. Pitch pRTI™ features sender-side filtering
for updates and interactions, which will substantially reduce network and
CPU load in large federations. You may also reduce the workload of your
federates using advisories which impose very little overhead. Still Pitch
pRTI™ has very modest CPU and memory requirements.

 It provides advanced debugging capabilities. There is an extensive GUI that
allows you to inspect the state of your federation during runtime as well as a
powerful set of debugging tools.

 It is easy to install and run. Pitch pRTI™ is extremely easy to install and
configure. It is easy to mix various platforms and languages in the same
federation.

http://www.pitch.se/

Pitch pRTI™ User’s Guide Introduction

Copyright  2016 Pitch Technologies Page 8[122]
July 2016

 It runs well over the Internet and other Wide Area Networks. By adding
Pitch Booster™ at each site, it is easy to run HLA simulations using Pitch
pRTI™ across both LAN and the Internet. Read more in section 14.6.

 It is network-friendly. You can do optimizations and configurations for LAN,
WAN and firewalls and inspect the status of the network graphically.

 It is commercially packaged and supported. It is possible to get an OEM
license to include it with your products. You can get local support and
consulting in several countries from Pitch or one of our distributors. See
http://www.pitch.se for details.

 It is superior for long-running federations. It handles unreliable federates
gracefully including automatic resign, ownership and time management
recovery and more.

 It gives you the ability to integrate your existing C/C++ simulators with
platform-independent Java systems. Pitch pRTI™ provides API:s for both
C++ and Java, so you can use federates written in any of those languages
together in the same federation.

Pitch pRTI™ is developed by Pitch. Professional consulting services and training is
also available.

1.6 Product Licensing Structure
The product is structured in the following way:

The Pitch pRTI™ base Central RTI Component (CRC), a.k.a. RTIexec license enables
you to run Pitch pRTI™ with a certain number of federates. You may for example
purchase a license for 10 federates. This will enable you to connect up to 10
federates (simulation systems) together. The federates may run on the same
computer or several different computers. Note that the Web Services API for HLA
Evolved is licensed separately.

Starting with v 4.5 it is also possible to combine multiple licenses whose number
of allowed federates are added to the total sum of allowed federates.

In addition to this, there is also local federate licensing which means that
federates can bring own licenses to the CRC. Such federates will not consume any
license from the CRC license.

Pitch pRTI™ User’s Guide Preparing for Pitch pRTI™

Copyright  2016 Pitch Technologies Page 9[122]
July 2016

2 Preparing for Pitch pRTI™

This chapter describes the computer hardware and software that is needed to run
a simulation using Pitch pRTI™. It also describes various configurations that are
possible.

2.1 A Topology and Components Example

An example of a federation of computer-based simulations that interoperates
using Pitch pRTI™ is described in the Figure 1

Central RTI

component

1

Federate X

2

Local RTI

Component
3

Federate Y

2

Local RTI

Component
3

Network

FOM file

4

Computer A Computer B Computer C

Figure 1 – An example topology.

The environment in Figure 1 consists of:

1. The Central RTI Component that manages the federation.

2. The federates participating in the federation.

3. The Local RTI Component which each federate use to communicate in the
federation.

4. One or more FOM modules that describes the Federation Object Model.

The federates and the Central RTI Component are running on separate computers.
Note that this is not required. Any number of federates can run on the same
computer, and any number of federates can run on the same computer as the
Central RTI Component. Another possible topology that shown in Figure 2.

Federate X

Local RTI

Component

Federate Y

Local RTI

Component

Network

FOM file

4

Computer A Computer B

Central RTI

component

Figure 2 - Another example topology.

C
o
m
p
u
t
e
r

A

C
o
m
p
u
t
e
r

B

C
o
m
p
u
t
e
r

C

Pitch pRTI™ User’s Guide Preparing for Pitch pRTI™

Copyright  2016 Pitch Technologies Page 10[122]
July 2016

2.2 The Central RTI Component (CRC)
The CRC is the central component of Pitch pRTI™, also known as the RTIexec. It
provides a graphical and a command line interface that lets you monitor the
execution. It is responsible for coordinating the entire federation and distributes
the work between the Local RTI Components.

When a federate wants to join a federation execution, it connects to the CRC and
receives information about the federation execution such as which other
federates are currently joined to the federation and how to communicate with
them.

2.3 The Federates
The federates may be implemented in several programming languages:

 C++

 Any programming language with an interface module written in C++

 Java

 Any programming language, wrapped in Java

You may mix different implementation languages in the same federation.

2.4 The Local RTI Component (LRC)
Every federate is compiled and linked with a component that contains the classes
and methods that are used to connect to the federation. This component is called
the Local RTI Component (LRC). The LRC takes care of the federate’s need to
exchange information with other federates.

This makes Pitch pRTI™ a distributed application, consisting of both the CRC and a
number of LRC:s (one for each federate). Figure 3 illustrates the relationship
between the CRC, the LRC and the federates.

Central RTI

component

Federate X

Local RTI

Component

Federate Y

Local RTI

Component

RTI

Figure 3 – The relationship between the CRC, the LRC and the federates.

2.5 FOM Files

The FOM files contain the Federation Object Model. The Federation Object Model
describes the information exchange in the federation. This includes objects,
interactions, attributes, parameters and data types for all the information that is

Pitch pRTI™ User’s Guide Preparing for Pitch pRTI™

Copyright  2016 Pitch Technologies Page 11[122]
July 2016

exchanged between the federates. The data in the files is XML formatted, as
specified by the HLA standard. A new feature of the HLA Evolved standard is the
concept of modular FOMs. This means that the federation object models can be
composed by multiple FOM modules, which can contain either the entire FOM,
extensions to another FOM module, or new concepts independent of other FOM
modules.

Federation object models can be edited using Pitch Visual OMT™. You can use it
to create, edit and manage Federation Object Models. Figure 4 shows a
screenshot of the tool.

Figure 4 – Pitch Visual OMT™ object modeling tool.

2.6 The Computers
The computers that you use will have to provide appropriate networking
according to the next section as well as meet the requirements of the local
federates. Supported operating systems include:

 Windows XP/2003/Vista/7/2008 using both 32 and 64 bit architectures

 Linux on x86 and x64 architectures

 Mac OS X 10.6, 10.7, 10.8

Pitch pRTI™ User’s Guide Preparing for Pitch pRTI™

Copyright  2016 Pitch Technologies Page 12[122]
July 2016

 Other platforms may be supported on demand

You may mix different brands and operating system in the same federation.
Additional platforms may be available and customer ports can be performed.
Contact Pitch or your local distributor for more information.

2.7 Networking
The protocol used for Pitch pRTI™ is the industry standard TCP/IP. The most
commonly used network configurations for simulations are:

 An Ethernet-based Local Area Network (LAN). All computers are equipped
with Ethernet cards and connected to a hub or switch with 10/100/1000
Base-T cables. Note that using a switch may significantly improve
performance for federations exchanging large amounts of data.

 WiFi. All computers are equipped with a WiFi card and establish wireless
connections through a WiFi router or access point.

 All federates run on a single computer, which is not connected to a network.
In this case you will a loop-back network interface.

In addition to this you will need to be able to specify the address of the CRC or
RTIexec to which you are trying to connect using one of the following:

 If you have a DNS service it will provide the translation between names
(such as myhost.pitch.se) and IP addresses (such as 192.168.1.1). In this case
you will need to know the name of the computer running Pitch pRTI™. Note
that the DNS server should also be able to resolve IP addresses to names,
also known as reverse lookups.

 If you do not have a DNS service you can use the IP address directly.

 If you are using a loop-back interface, the standard address is 127.0.0.1.

 If you are using Pitch pRTI™ over Pitch Booster™ a unique CRC-name is used
to address the CRC.

Contact your network administrator for details about your organization’s network.

The default Pitch pRTI™ settings are suitable for both local area networks and
wide area networks. Pitch pRTI™ runs well over WAN:s with routers, for example
over the Internet or big corporate networks. See chapter 14 for more information.

2.8 Powerful User Interfaces
Pitch pRTI provides three graphical user interfaces (GUIs):

 The Desktop GUI that facilitates the overall management of the
federation and federates.

 The Pitch Control Center, which facilitates monitoring and
troubleshooting locally on a computer running individual federates.

 The Web View user interface that can be accessed from any
computer, tablet or mobile phone on the network using a web
browser.

These three GUIs are provided for different purposes, as described below.

Pitch pRTI™ User’s Guide Preparing for Pitch pRTI™

Copyright  2016 Pitch Technologies Page 13[122]
July 2016

The Desktop GUI is available when running the CRC on a desktop. It is shown in
Figure 5.

Figure 5 –Desktop CRC GUI

This GUI is targeted at users that are responsible for managing the entire
federation. It enables users to monitor which federations and federates that are
currently available, their overall state. It also provides information about the
Federation Object Models used, registered objects, publication, subscriptions,
ownership, time management and more.

Pitch pRTI™ User’s Guide Preparing for Pitch pRTI™

Copyright  2016 Pitch Technologies Page 14[122]
July 2016

Pitch Control Center is available on any computer running a federate. It is shown
in the following figure.

Figure 6 –Pitch Control Center

This GUI is targeted at developers and users that need to monitor and
troubleshoot individual federates. It provides monitoring of the connection status
and performance, with graphical monitoring of incoming and outgoing call rates
and queues. It also provides Friendly Errors, whereby error messages can be
delivered to a user of federate problems, without interfering with the federate
itself. Friendly Errors also includes suggestions for solving configuration problems.

Pitch pRTI™ User’s Guide Preparing for Pitch pRTI™

Copyright  2016 Pitch Technologies Page 15[122]
July 2016

The Web View is available on any computer, tablet or mobile phone on the
network with a web browser. It is shown in the following figure.

Figure 7 –Pitch Web View

This GUI enables federation managers, federate developers and IT staff to quickly
get an insight into the RTI from anywhere and from any device. Several users can
connect at the same time.

Different user levels can be used. “Federation Manager” users may resign
federates and may destroy federation executions but a “Guest” user may only be
able to see the current status of the federation and the joined federates.

The Web View is implemented as a web application that connects to the Central
RTI Component.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 16[122]
July 2016

3 Installing Pitch pRTI™

This chapter covers how to install and verify the Central RTI Component of Pitch
pRTI™ using the sample federates. It also covers the installation of the Local RTI
Components for the use by your own federates.

3.1 Windows Installation
Before you start, check that you have:

 The installer executable.

 Your license activation key that you will use to activate the software, in case
of installing a CRC or a locally licensed LRC.

Launch the installer executable. A graphical installer will now start.

Figure 8 shows the introduction screen which gives you a general introduction to
the installation.

Figure 8 – Installation introduction.

Click Next to continue. The license agreement will then be presented to you as
shown in Figure 9.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 17[122]
July 2016

Figure 9 – End user license agreement.

Read the license agreement and make the appropriate selection. Then click Next.

You are now supposed to select where to install pRTI™ on your system. You are
recommended to use the default installation directory, but pRTI™ will work
properly even if it is installed in a different directory.

Choose installation directory for Pitch pRTI™

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 18[122]
July 2016

Figure 10 – Installation destination.

You can now select which type of installation you want. The default selection
installs all components, including both the CRC and the LRC. If you are installing
on a computer that will run the RTIexec (the CRC) we recommend both options. If
you are installing on a computer where only federates will be running, you only
need the LRC option.

The Web View Server component is also optional and could be installed
standalone.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 19[122]
July 2016

Figure 11 – Installation components selection.

Make your selection and click Next. You are then asked in which program group
that you want the shortcuts.

Figure 12 – Create shortcuts on the start menu.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 20[122]
July 2016

Click Next to start the installation after making your selection. You are then asked
to choose if you would like the installer to add the pRTI™ C++ libraries to the PATH
variable on your system.

Figure 13 – C++ library PATH setting.

Click next to continue. You are then presented additional options such as creating
desktop icons for the pRTI™ CRC and for setting an initial CRC name.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 21[122]
July 2016

Figure 14 – Additional options.

Click next to finish the installation.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 22[122]
July 2016

Click Finish to exit the installer.

3.2 Activating licenses

Before you can start the Pitch pRTI™ CRC, you need to activate your license with
your license activation key. This is done through a separate application called
Pitch pRTI License Activator, which is included in the installation. If you start Pitch
pRTI™ without having activated the license with the License Activator, an error
message will be displayed and Pitch pRTI™ will not be able to start.

Important note: In order to activate your CRC license correctly on Windows, you
must run the License Activator as administrator. In order to activate your license
correctly on Linux, you must run the License Activator as root. On Mac OS X the
License Activator app need to be executed with writing permissions to your pRTI
installation directory.

3.2.1 The license Activator Tools

The License Activator can either be executed in text mode in a command line
terminal or in graphical mode. The graphical version is available in the Pitch pRTI
folder on the Windows start menu and in the applications menu on most Linux
desktop environments. The graphical version can also be started directly by
executing the application LicenseActivatorGui in the Pitch pRTI™ installation
directory. The command line version can be started the same way, by executing
the application LicenseActivator.

IMPORTANT NOTE!
Using the command line version may require use of strong quoting (' and not “)
around the license activation key.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 23[122]
July 2016

For local federate licenses, which is a new feature described in the next
subsection, the LRC Settings editor application is used for license handling.

3.2.2 License Activation Modes

Starting with v 4.5, Pitch pRTI™ come with some new modes for license handling:

Single CRC license key

This is the way that pRTI™ previously has been handling licenses, and therefore it
is the most widely used mode. One single license key is used for activating the
CRC, and this key allows for a certain number of federates to be used with the
CRC. It also references a hardware-lock such as a USB-dongle.

Multiple CRC license keys

In this mode, one CRC license key is being used as the primary license key which
determines if the CRC is allowed to start or not and also contains an allowance for
a number of federates. This is handled as the single CRC license key above.

In addition to the primary license key, a number of additional license keys can be
activated for the CRC. The number of federates allowed in each of the additional
keys, are added to the total amount of federates allowed on the CRC – as long as
the additional keys are valid and their hardware lock (such as USB-dongle) can be
detected.

Local federate license key

In this mode, the license key is handled by the LRC instead of the CRC. The
federate running the LRC is bringing its own license to the CRC, instead of
consuming one of the federate allowances on the CRC license. Note that the CRC
will still need a primary license of its own to start up.

The local federate license can hold one federate allowance for the federate itself,
but it can also contain a number of additional federate allowances to be used by
other federates. So, if a LRC is bringing a local federate license allowing 5
federates, it will enable the use of additional 4 other federates on that CRC. When
the LRC is bringing these license allowances to the CRC it can be done with two
types of restrictions:

Restricted - this means that additional allowances may only be used by other
federates which has brought the same license key to the CRC.

Public - this means that the additional licenses brought by the federate can be
used by any other federate, no matter if and which license key it has brought.

NOTE – Federates using the local license need to have <prti-install-dir>/lib on
their library path. This is controlled using the Java system property
java.library.path. The C++ chat sample applications has a file named
prti.vmoptions which shows how to set this property for C++ federates. The same
line, -Djava.library.path=<prti-install-dir>/lib should be added to the command
line of Java federates using the local federate license.

Floating license key

An alternative to using a local CRC license key is to connect to a Pitch Floating
License Server™. To configure pRTI to use a floating license, open the CRC Settings
tool, click the license tab and enter the address of the Pitch Floating License

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 24[122]
July 2016

Server™.The federate count field is used to configure how many federates that
shall be allocated when requesting a license lease.

3.3 Verifying the Windows Installation
It is now time to verify your installation.

Start Pitch pRTI™ using the start menu shortcut:

Start  Programs  Pitch Pitch pRTI  Pitch pRTI

This starts Pitch pRTI™ with the graphical user interface and no command prompt,
so in case you want to use the command line interface you may instead start Pitch
pRTI™ with both a graphical user interface and a command prompt through a
different start menu shortcut:

Start  Programs  Pitch pRTI  Pitch pRTI (with console)

If your license has not been activated, you will be asked to run the License
Activator tool first.

Figure 15 – License activation notification.

Important note: The CRC license activation is used to activate the Central RTI
Component license. You are only allowed to use the license number on one
computer.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 25[122]
July 2016

Figure 16 – The Pitch pRTI™ Explorer.

Start a Java based federate using the start menu command:

Start  Programs  Pitch pRTI  Samples  Chat Federate (Java)

Start a C++ based federate using the start menu command:

Start  Programs  Pitch pRTI  Samples  Chat Federate (Visual C++ 9.0)

You will be prompted to enter the IP-address of the CRC host, press enter to
choose localhost.

Enter the IP address of the CRC host [localhost]:

You will be prompted to enter a name, as an example we will use Fred and
Barney.

Enter your name: Fred

After entering the names, type a message in one of the federate windows and
press the Enter key.

> Hello Barney

The message will now appear in the other federate window (Barney’s) as:

> Fred: Hello Barney

Now click in the other federate window (Barney’s) and type the following and
finish by pressing the Enter key.

> Hello Fred

The message will now appear in the other federate window (Fred’s) as:

> Barney: Hello Fred

Now type a period (.) in each federate window followed by the Enter key twice to
shut down the chat federates.

Switch to the Pitch pRTI™ textual interface and type QUIT followed by the Enter
key or click Shut Down RTIexec in the graphical interface. Both these alternatives
will shut down the CRC.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 26[122]
July 2016

If you want to run the chat sample over a network, simply enter the IP-address of
the CRC host when prompted by the chat program instead of using localhost.
Watch it connect to the remote CRC of the pRTI™.

3.4 Linux Installation
Before you start, check that you have

 The installation executable.

 Your license activation key that you will use to activate the software, in case
of installing a CRC or a locally licensed LRC.

Execute the installer file from a terminal window. Note that you may have to
modify the file permissions using the chmod command before running the file:

[root@Enorm root] # ./chmod u+x install_prti1516_v5_Linux.sh
[root@Enorm root] # ./install_prti1516_v5_Linux.sh

A graphical installer will now start. The graphical installer is very similar to the
Windows installer, so check the instructions in section 3.1 if anything is unclear.

3.5 Verifying the Linux Installation

In the bin directory, found in the installation directory, there is an executable,
pRTI1516e, that can be used to start pRTI™. There are also shell scripts in the
directories samples/chat and samples/chatcc that can be used to start Chat
federates that are supplied with the default installation. There are also shell
scripts and binary launchers in the bin directory, which can start editors for LRC
settings, CRC settings and Trace settings. See section 16.2 for more information.
To start Pitch pRTI™, run the script prti1516.sh if you want to have both the
graphical- and command line interface or the binary launcher pRTI1516e if you
only want to use the graphical interface of the CRC. If you are using the full
version of Pitch pRTI™ (not LE) you will be required to enter the license activation
key using the LicenseActivator application in case your license has not yet been
activated.

After activating your license you will be able to start the CRC graphical user
interface, called pRTI Explorer, as shown in Figure 17.

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 27[122]
July 2016

Figure 17 – The pRTI™ Explorer

Important note: The license activation key is used to activate the Central RTI
Component. You are only allowed to use the license activation key on one
computer.

To start the Java Chat federate, run the chat-java-1516e.sh file in a new command
prompt window. Make sure that pRTI™ is running before you start the federate.

[root@Enorm root]# cd /opt/prti1516e/samples/chat-java/
[root@Enorm bin]$./chat-java-1516e.sh
Enter the address of the CRC host [localhost]:<ENTER>
Enter your name: Fred
Type messages you want to send. To exit, type . <ENTER>
>

Now, to start the C++ Chat federate, open another command prompt window and
run the chat-cpp-1516e_gccXX.sh file.

[root@Enorm root]# cd /opt/prti1516e/samples/chat-cpp/
[root@Enorm bin]# ./chat-cpp-1516e_gcc41.sh
Enter the address of the CRC host [localhost]:<ENTER>
Enter your name: Barney
Type messages you want to send. To exit, type . <ENTER>
>

Enter a message in one of the federate windows (Barney’s):

> Hello Fred

Finish by pressing the Return key. Watch the message appear in the window of
the other federate:

> Barney: Hello Fred

Now click in the other federate window (Fred’s) and type:

> Hello Barney

Finish by pressing the Return key. Watch the message appear in the window of
the other federate:

> Fred: Hello Barney

Pitch pRTI™ User’s Guide Installing Pitch pRTI™

Copyright  2016 Pitch Technologies Page 28[122]
July 2016

Now type a period (.) in each federate window followed by the Return key twice.

Switch to the pRTI™ command line interface and type QUIT followed by Return or
press the button Shut Down RTIexec in the pRTI Explorer window to shut down
Pitch pRTI™.

3.6 Installing on Other Platforms
Installing Pitch pRTI™ on other platforms than those described above, is made in a
similar way unless a separate instruction is provided.

Pitch pRTI™ User’s Guide Uninstalling Pitch pRTI™

Copyright  2016 Pitch Technologies Page 29[122]
July 2016

4 Uninstalling Pitch pRTI™

4.1 Uninstalling on Windows
To uninstall Pitch pRTI™ on Windows simply use the Add or Remove Programs
application available in the Control Panel.

This will start the graphical uninstaller which will guide you through the uninstall
process.

4.2 Uninstalling on Linux
To uninstall Pitch pRTI™ on Linux run the uninstall executable found in the root of
the Pitch pRTI™ installation.

[root@Enorm root]# sudo /opt/prti1516e/uninstall

This will start the graphical uninstaller which will guide you through uninstall
process.

Note: If you have installed Pitch pRTI™ as a daemon please uninstall the daemon
prior to uninstalling Pitch pRTI™.

4.3 Uninstalling on Other Platforms
Uninstalling Pitch pRTI™ on other platforms than those described above, is done
in a similar way unless a separate installation instruction provided for that
platform.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 30[122]
July 2016

5 Running Pitch pRTI™

This section describes how to run Pitch pRTI™ and what can be done using the
graphical user interfaces and the command line interface.

Please see chapter 3 for information about how to start Pitch pRTI™.

5.1 Graphical User Interfaces Overview

 The CRC GUI, pRTI Explorer, which is available on the computer
with the CRC. It focuses on the management of the federations and
federation-wide use of HLA services. It enables you to monitor how
federates join, resign, publish, subscribe, register objects etc. These
features are also available through Pitch Web View™.
There is also a graphical user interface for doing CRC settings
named CRC Settings.

 Pitch Control Center, which is a graphical user interface available
on each computer running a federate. It focuses on local aspects of
each federate, such as the connection status and performance
during execution. Pitch Control Center is described in more detail in
section 8. In addition to this, there is a graphical user interface for
LRC settings, which can be used for configuring the LRC before the
execution starts.

If you have a federate running on the same computer as the CRC, you can use
both pRTI Explorer and Pitch Control Center.

5.2 Using the Graphical User Interface

The graphical user interface lets you monitor, inspect and debug HLA federations.
The main advantages of the graphical user interface are:

 Easier to get started with HLA for new developers.

 Improved productivity when developing and debugging federates.

 Improved productivity during integration and testing of federations.

 Improved monitoring during execution of simulations.

The main functionality includes:

 Inspect and modify the configuration of the CRC.

 Inspect the lifecycle of federations and federates.

 Inspect the FOM at runtime.

 Resign and destroy federates and federations.

 Check synchronization points.

 List central information about registered objects and attribute ownership.

 Monitor time management information for federates graphically.

 Inspect communication links between federates and the CRC.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 31[122]
July 2016

 Inspect publications and subscriptions for each LRC.

 Inspect which objects are discovered as which class for each LRC.

 Control tracing of RTI calls and callbacks for each LRC.

 And more…

When Pitch pRTI™ is started, both the command line interface and the graphical
user interface can be started. Note if a CRC is already running on the computer
the dialog box shown in Figure 18 will be displayed.

Figure 18 – Error message when multiple CRC instances are started.

Either shut down the other CRC or specify a different port as described in section
16.1. If you specify a different port, remember to make sure that all the federates
use this port and not the default when connecting to the CRC.

Figure 19 – Pitch pRTI™ start panel.

Figure 19 shows the graphical user interface. To the left is a tree graph where you
can navigate by expanding and collapsing branches. To the right is a panel
displaying information corresponding to the current selection in the tree.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 32[122]
July 2016

The General node contains information regarding the CRC such as version,
settings, run-time environment and license, while the Federations node contains
information about the federation executions that are currently running. The
following sections provide a brief overview the main views available under these
two nodes.

5.2.1 Version

Figure 20 shows the version panel which contains a Check for Updates… button.
Clicking this will open your default web browser and guide you to a webpage
which will show you if there are any Pitch pRTI™ updates available.

Figure 20 – The version panel.

5.2.2 Settings

Figure 21 shows the settings panel. For more information on this see section 16.1.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 33[122]
July 2016

Figure 21 The settings panel.

5.2.3 Environment

Figure 22 shows the environment panel. This provides information on which JRE is
being used and other environmental data.

Figure 22 – The environment panel.

5.2.4 License

Figure 23 shows the license panel which provides information on the current
license being used. Here you can see which functionality you license includes and
also when it will expire if it is not a permanent license. Entering a new license can
however only be done using the License Activator application.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 34[122]
July 2016

Figure 23 – The license panel.

5.2.5 Event Log

Figure 24 shows the event log panel. This event log is similar to that found on the
Windows operating system. It maintains a log of events that occurs, e.g. the
creation of a federation execution, crashing federates etc.

Figure 24 – The event log panel.

5.2.6 Federation Overview

Clicking on the ChatRoom federation icon brings you to the view shown in Figure
25. This shows information about the federation, including information about the
Central RTI Component and each participating federate.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 35[122]
July 2016

Figure 25 – The federation lollipop view.

5.2.7 Federation Object Model (FOM)

The FOM view lets you inspect the FOM used in the selected federation at
runtime. Figure 26 illustrates how the FOM view displays the parameters of the
Communication interaction class.

Figure 26 – Inspection of the FOM.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 36[122]
July 2016

5.2.8 Object Instances

The view shown in Figure 27 gives a detailed view of all the object instances that
are currently registered in the federation. For each object instance, all the
attributes can be listed by clicking on the object instance in the table.

Figure 27 – Inspection of object instances and attributes.

5.2.9 Time Graph

Figure 28 shows the time management state for the entire federation. The current
time value for each federate is illustrated by a red triangle. The lookahead is
shown as a blue rectangle. The grey area represents a time value that the
federate is not allowed to achieve yet, provided that the federate is time
constrained. The vertical black indicator shows the minimum time-stamp that the
federate will attach to any new messages.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 37[122]
July 2016

Figure 28 – The time status for each federate.

5.2.10 Synchronization Points

Figure 29 shows the synchronization points that exist in the federation. This view
will be empty if no synchronization points have been registered. Figure 29 shows
three different synchronization points, and also the status for each federate in the
federation. The synchronization point labeled Initialized has been achieved by the
federate with federate id 3. The federates that are listed in the Pending Federates
Id column have not achieved the synchronization point yet.

Figure 29 – The synchronization points and federate synchronization status.

5.2.11 Network Info

The Network info view lets you inspect the network links between the CRC and
the LRC:s in the federation. Clicking on a specific connection shows you statistics
for that connections network traffic as shown in Figure 30.

Figure 30 – The network information for federation participants.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 38[122]
July 2016

5.2.12 Federate Information and Tracing

The object instances, time graph, synchronization points and the network
information are details pertaining to the federation execution. The GUI also gives
you the possibility to view information about each federate.

Figure 31 shows some general information about the federate. The federate id,
the host of the computer where the federate is executing and some time
management information is displayed.

Figure 31 – The federate information panel.

Check the Tracing enabled checkbox to start tracing all the activity of the selected
federate. Select the target of the tracing by clicking the Trace to... button. Figure
35 on page 41 shows how to select specific services that should be traced.

It is also possible to resign the federate from the federation execution.

Figure 32 shows the declarations made by the federate. Select Declarations for a
federate in the tree view and clicking the buttons displays information as
described below:

 User Object Classes - displays the object class declarations made by
the federate.

 User Interactions Classes – displays the interaction class
declarations made by the federate.

 MOM Object Classes – displays MOM object class declarations
made by the federate.

 MOM Interaction Classes - displays MOM interaction class made by
the federate including.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 39[122]
July 2016

Figure 32 – The object and interaction class declarations.

Figure 33 shows DDM information for the federate:

 Object Class Subs – displays subscribed object classes

 Object Class Subs By Region – displays subscribed object class
attributes and the DDM region subscription

 Attribute Associations – displays attribute associations with regions

 Regions – lists the regions created by this federate

Figure 33 – The DDM information.

Figure 34 shows the object instances that have been discovered by the federate.
The Class column shows the class that the object was registered as (i.e. the object
class used by the federate who registered the object). The Known Class column
shows the class that the federate has discovered the object as.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 40[122]
July 2016

Figure 34 – The discovered object instances.

Figure 35 shows an example of the tracing possibilities. By selecting either an
entire service group (such as Declaration Management) or by selecting an
individual service, Pitch pRTI™ logs all the calls and callbacks belonging to that
service or service group. There is also a separate trace settings editor, named
Trace Settings which can be used for doing trace settings prior to federation
startup. This application can be found in the start menu on Windows and in the
bin directory of the Pitch pRTI™ installation.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 41[122]
July 2016

Figure 35 – The tracing panel.

Please note that the log file grows quite rapidly if you have a federation with
many frequent updates. Performance for your federation is also affected in a
negative way if tracing is enabled.

Figure 36 – The advanced panel.

Figure 36 shows the advanced view where LRC diagnostics information as well as
effective LRC settings can be inspected.

Pitch pRTI™ User’s Guide Running Pitch pRTI™

Copyright  2016 Pitch Technologies Page 42[122]
July 2016

5.3 Using the command line interface
Pitch pRTI™ can be started with or without a command line user interface. On
Windows start menu, there are two starting options of which one starts Pitch
pRTI™ with a command line user interface. Starting Pitch pRTI™ with the
command line user interface on other platforms is done by starting it through the

shell script available in the bin directory of the Pitch pRTI™ installation.

The command line provides the following commands:

Command Description

QUIT Quits pRTI™ 1516.

HELP Lists the available commands.

GUI Starts a graphical interface.

VERBOSE [<file>] Turn on verbose logging to the specified
file. If no file is specified, the logging is
done to the screen.

SILENT Turns off verbose logging.

DUMP Prints the internal data of the RTI
executive. Also useful for displaying the
TCP/IP addresses of all joined federates.

DUMP <federation name> <federate id> Prints the internal data of the specified
federate.

LIST Lists all joined federates.

RESIGN <federation name> <federate id> Resigns the specified federate.

DESTROY <federation name> Destroys the specified federation.

LICENSE Prompts for a new license key.

LICENSE SHOW Prints the current license information.

VERSION Prints version information in RTIexec

and every federate.
ENV Prints CLASSPATH and Java

environment information.
SETTINGS Prints the current CRC settings.

Pitch pRTI™ User’s Guide Running Pitch pRTI™ In Service-Mode

Copyright  2016 Pitch Technologies Page 43[122]
July 2016

6 Running Pitch pRTI™ In Service-

Mode

6.1 Introduction
It is possible to run Pitch pRTI™ CRC as a background service on Windows and as a
daemon on Mac OS X, Linux and unix platforms.

The benefits of running the CRC as a service include:

 Ease of use - the CRC service is managed along with other services on the
computer.

 There is no need for a user to be logged in while the CRC is running.

6.2 Limitations

When the CRC service is started on Windows, the pRTI™ Explorer window, shown
in Figure 37, is not displayed.

Figure 37 – The pRTI™ Explorer.

6.3 Installing the Service
When Pitch pRTI™ is installed, the components required to run it as a service are
also installed by default, but a manual start-up is required to activate the service
after installation. By default the service is not set to be started automatically.

6.3.1 Service Management on Windows

On Windows platforms, the service can be started, restarted and stopped using
these three commands from the start menu:

Start  Programs  Pitch pRTI  Service  Start pRTI Service

Start  Programs  Pitch pRTI  Service  Restart pRTI Service

Start  Programs  Pitch pRTI  Service  Stop pRTI Service

Pitch pRTI™ User’s Guide Running Pitch pRTI™ In Service-Mode

Copyright  2016 Pitch Technologies Page 44[122]
July 2016

Before starting the service you need to run the License Activator application to
enter the license activation key.

Important Note: When Pitch pRTI™ runs as a service it logs in using the Local
System account. This implies that when started, Pitch pRTI™ will look for settings
files (among other things) in the directory defined by the environment variable
PRTI1516E_HOME which is set to the pRTI™ installation directory by the installer
wizard.

The CRC service can also be managed through the Local Services tool which is
located in the Windows Control Panel.

6.3.2 Service Management on Linux

The pRTI™ installer installs the pRTI1516e-service script which allows you to
control the pRTI™ CRC daemon. This script allows you to start, stop and monitor
the daemon as illustrated below:

[para@maggie]# sudo service pRTI1516e-service start
Starting pRTI1516e-service
[para@maggie]# sudo service pRTI1516e-service status
The daemon is running
[para@maggie]# sudo service pRTI1516e-service stop
Shutting down pRTI1516e-service
Stopped.

Depending on which Linux distribution is being used, it is also possible to control
the daemon through a graphical user interface provided with the desktop
environment.

Important Note: When Pitch pRTI™ runs as a daemon it runs as the root user and
will therefore not search for the CRC settings file in the user home directory, but
instead in /etc/prti1516e. Therefore if you installed Pitch pRTI™ logged on as a
user other than root, you will need to manually copy the prti1516e directory from
the home directory of that user to the /etc directory. There is also an original copy
of the prti1516e directory located in the user.home directory under your Pitch
pRTI™ installation directory. This is meant to be copied to any directory needed.

6.3.3 Logging

The pRTI™ service is logging to the logging directory of the pRTI™ installation
(<install-dir>/logs). The log files written by the pRTI™ service are
CRC_service_stderr.log and CRC_service_stderr.log. This is a good starting point
for troubleshooting in case the CRC does not seem to operate correctly.

Pitch pRTI™ User’s Guide Using Pitch Web View

Copyright  2016 Pitch Technologies Page 45[122]
July 2016

7 Using Pitch Web View

7.1 Introduction
Starting with version 4.4, pRTI™ comes with a web based user interface which
substitutes the previous applet based web user interface. The major differences
between pRTI™ Web View and the previous web based user interface are:

 Pitch Web View is not based on Java applets so support for Java applets in
the web browser is not required.

 Pitch Web View is only using the HTTP protocol for communication
between the web browser and the web server, so no special firewall
configurations are needed.

 Pitch Web View is distributed as a web application archive (WAR) and can
easily be deployed on most servlet application servers, such as Apache
Tomcat.

The installation of Web View comes with a small web server which can be used to
launch the web application locally on your computer. In cases where Web View is
to be deployed in a scalable server environment, running as a service, we
recommend deploying it in an application server.

Figure 38 – Pitch pRTI™ Web View.

The benefits of the web based user interface include:

 The information provided through the pRTI™ Explorer is made accessible to
all sites and computers during a distributed federation execution as opposed
to only the site where the pRTI™ CRC is executing.

 Configurable security allows access control allowing the pRTI™ administrator
to decide who should have access to the graphical user interface.

 Combined with running pRTI™ in service-mode as describe in chapter 6, the
Web View allows pRTI™ to be installed and deployed in a more robust
manor, e.g. in fault server environment.

Pitch pRTI™ User’s Guide Using Pitch Web View

Copyright  2016 Pitch Technologies Page 46[122]
July 2016

See Pitch Web View User’s guide for how to access it for the first time and how to
configure and deploy it.

Pitch pRTI™ User’s Guide Pitch Control Center

Copyright  2016 Pitch Technologies Page 47[122]
July 2016

8 Pitch Control Center

This section describes Pitch Control Center, which is an application running on the
logged in desktop of a computer where the Pitch pRTI™ LRC is installed. The
purpose is to present useful diagnostics and error messages of LRCs executed by
federates on the computer.

8.1 Overview

On most operating systems, the Pitch pRTI™ installer will add a shortcut to Pitch
Control Center to the default startup directory of the desktop environment. If this
is not the case (typically on Linux desktop environments), Pitch Control Center
may be started manually or it may be added manually to the default startup
applications list. The executable for Pitch Control Center is to be found in the bin
subdirectory of the Pitch pRTI™ installation.

Figure 39 – Pitch Control Center overview

When the Pitch Control Center window is minimized or closed, it will still be
running available in the system tray. Right clicking the system tray will provide
additional options for starting settings editors, get version information, check for
updates or to close Pitch Control Center.

8.2 Friendly Errors
One of the tasks of Pitch Control Center is to present friendly error messages from
LRCs of federates running on the computer. So, if an error occurs in a federate
connected to Pitch Control Center (which happens automatically if Pitch Control
Center is running) the error is presented in a dialog box by Pitch Control Center.
The error is also available in the event log of Pitch Control Center and double
clicking the line of the event log will reopen the dialog presenting the error
message.

Pitch pRTI™ User’s Guide Pitch Control Center

Copyright  2016 Pitch Technologies Page 48[122]
July 2016

The Friendly Errors message presented in the dialog box is not only intended to
tell you what went wrong, but also intended to give you some qualified hint of
what is a likely cause and solution of such a problem.

8.3 LRC Monitoring
The overview of the Pitch Control Center main window shows some basic
information for each federate on the computer:

 A green led to indicate that the LRC has a correct connection to the
federation, which is a red led otherwise.

 A performance led which is green when the federate have no
obvious performance problems and which turns red in case the
federate does note cope with consuming received callbacks fast
enough or potentially in the event of other performance problems.

 Rate meters with small graphs displaying the rate of performed calls
to the RTI, rate of received callbacks and the size of the call back
queue. The callback queue the queue where incoming callbacks are
stored waiting for the federate application to consume them.

All this information and other details can be found by opening the monitoring
window of an individual federate as displayed in the next figures.

The status tab show some general status information.

Figure 40 – Pitch Control Center LRC monitor overview

The Performance tab shows performance related information and graphs of the
most significant metrics for determining the performance health of a federate.
Whenever a value in the table of number turns red, click it to get a hint of what is
wrong and why it is considered a performance threatening value.

Pitch pRTI™ User’s Guide Pitch Control Center

Copyright  2016 Pitch Technologies Page 49[122]
July 2016

Figure 41 – Pitch Control Center LRC performance monitor

The RTI settings tab shows the LRC settings being used for the LRC. LRC settings
may be a combination of different settings files, and this view will help you
investigate what the exact value of each setting is and from where it has been
loaded.

Figure 42 – Pitch Control Center LRC monitor RTI settings

The Java Properties tab shows the Java properties of the LRC. Even though your
federate is written in C++, parts of the LRC will be running Java and therefore this

Pitch pRTI™ User’s Guide Pitch Control Center

Copyright  2016 Pitch Technologies Page 50[122]
July 2016

view is presenting all the Java system properties set by the environment for your
federate’s LRC.

Figure 43 – Pitch Control Center LRC monitor Java properties

Pitch pRTI™ User’s Guide Pitch Control Center

Copyright  2016 Pitch Technologies Page 51[122]
July 2016

The OS Environment tab shows the final result of environment variables in the
shell of your federate. Some environment variables most likely being more
important than others, such as PATH and CLASSPATH, it still shows the entire list
since this is quite individual for each federate application.

Figure 44 – Pitch Control Center LRC monitor environment variables

Pitch pRTI™ User’s Guide Pitch Control Center

Copyright  2016 Pitch Technologies Page 52[122]
July 2016

Pitch pRTI™ User’s Guide Developing with Pitch pRTI™

Copyright  2016 Pitch Technologies Page 53[122]
July 2016

9 Developing with Pitch pRTI™

This section describes how you set up your development environment with Pitch
pRTI™ so you can start developing federates.

Note that you need to purchase an add-on if you plan to do C++ development.
Also note that the DLL:s and shared libraries that are distributed with Pitch pRTI™

are compiled using the compilers mentioned below as well as with other
compilers.

This chapter does not cover all compiler versions for which there are pRTI™
libraries. Setting up the development environment is very similar between many
of the compatible versions. The lib subdirectory of your pRTI™ installation has
subdirectories containing libraries for different compiler versions. This is the
complete list of supported versions of your installed version of pRTI™. The pRTI™
web site on www.pitch.se also specifies which versions are supported.

If you are using Java, you only need to make sure that you have a Java
Development Kit of version 1.6.0 or later.

Technical note: The LRC contains the C++ interface and the Java interface that the
federate is using, along with the implementation of some of the functions of Pitch
pRTI™. The Windows C++ interface is distributed as a DLL and a .lib file, the Linux
C++ interface is distributed as a shared library and the Java interface is distributed
as a Java jar file.

9.1 Microsoft Visual Studio 2010 on Windows

9.1.1 Creating a New Project

Begin with creating a new project. Under Visual C++ Projects, select Win32
Console Project. Name the project chatcc and place it in the C:\Program
Files\prti1516e\samples directory. Click OK.

Figure 45 – Creating a new project

Pitch pRTI™ User’s Guide Developing with Pitch pRTI™

Copyright  2016 Pitch Technologies Page 54[122]
July 2016

Next, select Application Settings and make sure that Console application and
Empty project is selected.

Figure 46 – Application settings for the chatcc project.

From the Project menu select Add Existing Items and select the files in the src
directory.

Figure 47 – Add source files to the project.

Now you will need to edit a few project properties. In the Project menu select
Properties. This example will illustrate how to edit the debug configuration

Pitch pRTI™ User’s Guide Developing with Pitch pRTI™

Copyright  2016 Pitch Technologies Page 55[122]
July 2016

(similar steps are required for the release configuration) so start by selecting
Debug in the Configuration drop-down menu.

Figure 48 – Settings for the Debug configuration.

9.1.2 Settings Under the C/C++ Folder

In the Configuration Properties window click C/C++ and select General. In the
Additional Include Directories field you will need to specify path to the directory
containing the include files for Pitch pRTI™. In the default installation, this is
C:\Program Files\prti1516e\include. You will also need to include the src directory
containing the files you previously added: C:\Program
Files\prti1516e\samples\chat-cpp\src.

Figure 49 – Specify additional include directories.

Pitch pRTI™ User’s Guide Developing with Pitch pRTI™

Copyright  2016 Pitch Technologies Page 56[122]
July 2016

Next, select Code Generation in the Configuration Properties menu. Pitch pRTI™ is
a multi-threaded application, so a multi-threaded run-time library is needed. Pitch
pRTI™ is distributed with both release and debug versions of the DLL. Since this
example illustrates how to edit the debug configuration select Multi-threaded
Debug DLL (/MDd) in the Runtime Library field.

Figure 50 – Select run-time library to use.

Next, select Language in the Configuration Properties menu and enable Run-Time
Type Info.

Figure 51 – Enable Run-Time Type Information (RTTI).

These were all the properties that need to be edited under the C/C++ folder. Next
we will need to edit some properties under the Linker folder.

Pitch pRTI™ User’s Guide Developing with Pitch pRTI™

Copyright  2016 Pitch Technologies Page 57[122]
July 2016

9.1.3 Settings Under the Linker Folder

In the Configuration Properties window click Linker and select General. In the
Additional Library Directories field you will need to specify path to the directory
containing the library files for Pitch pRTI™. In the default installation, this is
C:\Program Files\prti1516e\lib\vc100. You will also need to add the directory
containing the pthread library: C:\Program Files\prti1516e\samples\chat-cpp.

Figure 52 – Specify additional library directories.

Next, select Input in the Configuration Properties window. In the Additional
Dependencies field, add the library librti1516ed.lib. Note the d that appends the
librti1516e library, this specifies it as a debug library. In the release configuration,
librti1516e.lib should be specified instead. Also add the library pthreadVC2.lib
(included with the chatcc sample) which is the threading library used by the
sample.

Pitch pRTI™ User’s Guide Developing with Pitch pRTI™

Copyright  2016 Pitch Technologies Page 58[122]
July 2016

Figure 53 – Specify additional dependencies.

Now you should be able to compile and link the Chat federate.

Do not forget to start Pitch pRTI™ before starting the federate. Also note that the
Chat-evolved.xml file is assumed to be located in the same directory as the Chat
executable.

The setup for the release configuration is similar to that of the debug
configuration.

9.2 Optimization flags for Visual Studio release builds
Pitch pRTI™ support the usage of the non-standard compiler flag combination
"no_scl" for Microsoft Visual C++ 8.0 and 9.0 compilers on Microsoft Windows OS
(Microsoft Visual Studio 2005 and 2008 respectively). The no_scl builds can be
used for improved performance or for compatibility with other RTI
implementations.

The following, additional, pre-processor flags are set for no_scl builds:
"_SECURE_SCL=0" and "_HAS_ITERATOR_DEBUGGING=0". The no_scl builds can
be found in the lib dir alongside the regular vc90 and vc80 libraries, for example
vc90_no_scl.

9.3 Running federates from the Visual Studio IDE

When executing the federate from the Visual Studio editor you have to configure
the debugging environment variables to include the libraries it depends upon by
adding them to the PATH. To edit the debugging environment variable in Visual
Studio 2010 choose the 'Project' menu item and then 'Properties'. This will bring
up the property pages. Under 'Configuration Properties' there's a debugging item
where you will find the environment path. Set the path to include all
dependencies from the pRTI installation, similar to the linker library path.

Pitch pRTI™ User’s Guide Developing with Pitch pRTI™

Copyright  2016 Pitch Technologies Page 59[122]
July 2016

9.4 Other Microsoft Visual Studio versions on Windows
The projects configuration steps described for Microsoft Visual Studio 2010 are
similar to the configuration of the other supported Visual Studio versions - 6.0,
.NET 2003, 2005, and 2008.

9.5 GCC on Linux
This example will illustrate how to set up the C++ chat example provided with the
default installation so you can compile it using GCC v4.1.

9.5.1 Modifying the Makefile

In the src directory found in the samples/chat-cpp directory contains a Makefile
which can be used to build the ChatCC example federate. Run make to build the
federate.

9.5.2 Adding prti1516e.jar to the CLASSPATH

To be able to use pRTI™, you need to ensure that the prti1516e.jar file is available
on your Java CLASSPATH. When using the graphical installer, this is done
automatically for you on Windows. The installer adds the jar files needed by
pRTI™ to the CLASSPATH.

In most cases, we do not recommend moving prti1516e.jar from the lib
subdirectory. But, if that for some reason anyway is necessary it is important to
also move the other jar-files in the lib directory to the same location since there
are dependencies between prti1516e.jar and those jar-files. Note that moving
these files will prevent the installer to update your LRC. You will simply have to do
that manually.

9.5.3 Modifying the library search path

While looking at the make file, note that a federate is linked with a number of
shared libraries. The libraries (including the directory where they can be found) on
32-bit systems are:

 librti1516e.so - $PRTI_HOME /lib/gcc41

 libfedtime1516e.so - $PRTI_HOME/lib/gcc41

 libjava.so - $PRTI_HOME /jre/lib/i386/

 libverify.so - $PRTI_HOME /jre/lib/i386/

 libjvm.so - $PRTI_HOME/jre/lib/i386/client/

And the similar libraries for 64-bit systems are:

 librti1516e.so - $PRTI_HOME /lib/gcc41_64

 libfedtime1516e.so - $PRTI_HOME/lib/gcc41_64

 libjava.so - $PRTI_HOME /jre/lib/amd64/

 libverify.so - $PRTI_HOME /jre/lib/amd64/

 libjvm.so - $PRTI_HOME/jre/lib/amd64/server/

When executing the federate, these libraries need to be loaded. The run-time
linker needs to be able to find the libraries, and thus it needs to know which
directories to search. This can be configured either using the ldconfig tool

Pitch pRTI™ User’s Guide Developing with Pitch pRTI™

Copyright  2016 Pitch Technologies Page 60[122]
July 2016

(available in your Linux environment) or by adding the directories listed above to
the environment variable LD_LIBRARY_PATH. The easiest thing to do is to add the
directories to the LD_LIBRARY_PATH.

9.6 Custom signal handlers in C++
If there is a need for custom POSIX signal handlers in the federate application,
special care must be taken to ensure correct operation.

Signal handlers are routines that are called when a certain signal is sent. Signal
handlers can be registered with the signal()system call. Custom signal handlers
conflict with signal handlers registered by pRTI and will be disabled.

To make signal handling work correctly the following environment variable must
be set:

On windows:
set PRTI1516_OPTION1=-Xrs

On Linux:
export PRTI1516_OPTION1=-Xrs

An alternative way of doing this is to create a text file named "prti.vmoptions" in
the current working directory of the federate, and add one line with the text "-
Xrs" to the file.

9.7 Java
For Java development, all you need to do is to make the file prti1516e.jar
available in your development environment, and make sure that the file is
available on the CLASSPATH when your federate is running.

We strongly recommend that you keep the jar file in the pRTI installation and
refers the path to it on the CLASSPATH. This way upgrades done using an automatic
installer keeps your federate up to date and all the other jar-files in the
installation on which prti1516e.jar may depend on can be resolved. If you
however need to move the jar-file to some other location, make sure to also
move the other jar files located in the same directory as prti1516e.jar (the
installation's lib directory) to the same location. Upgrading will then require that
you manually move these files.

Pitch pRTI™ User’s Guide Writing a simple federate in C++

Copyright  2016 Pitch Technologies Page 61[122]
July 2016

10 Writing a simple federate in C++

This section provides an introduction to writing your own HLA federate in C++. It is
not a complete HLA development guideline. A full tutorial for developing HLA
federates and federations is available separately on www.pitch.se. It is assumed
that you are familiar with the contents of chapter (6) Thus, this chapter does not
deal with compiling and linking your federate.

This introduction is based on the source code in the chatcc example, provided
with the installation of Pitch pRTI™. The chatcc example is a small chat application
that lets users send messages to each other. The FOM used is shown in Figure 54.

Figure 54 – The FOM used in the ChatRoom federation.

10.1 The FederateAmbassador and the RTIambassador
There are two main classes to deal with when implementing a federate,
FederateAmbassador and RTIambassador.

The FederateAmbassador class is the class through which the RTI communicates
with the federate. The RTI sends messages to the federate by invoking the
methods in the FederateAmbassador class (invoking such a method is generally
referenced as invoking a callback). When you write your own federate you
subclass the abstract FederateAmbassador class and implement all its callback
methods. The chat samples subclass the NullFederateAmbassador class which
provides empty implementations for all the callbacks methods in
FederateAmbassador. When you write your own federate you can simply subclass
it and implement (override) the callbacks that you are interested in.

http://www.pitch.se/

Pitch pRTI™ User’s Guide Writing a simple federate in C++

Copyright  2016 Pitch Technologies Page 62[122]
July 2016

RTIambassador is the class through which the federate communicates with the
RTI. It is represented by an auto pointer that is automatically obtained from the
RTIambassadorFactory class. The code looks like this:

auto_ptr< RTIambassador > _rtiAmbassador;
auto_ptr <RTIambassadorFactory> rtiAmbassadorFactory (new RTIambassadorFactory());
_rtiAmbassador = rtiAmbassadorFactory->createRTIambassador();

All communication between the federate and the RTI must go through the
FederateAmbassador and the RTIambassador classes.

10.2 Connecting to the RTI

Before creating or joining federation executions, the federate needs to connect to
the RTI. This is done through the following call to the RTIambassador:

wstring settingsDesignator(L"crcAddress="+ host + L":" + port);
_rtiAmbassador->connect(*this, HLA_IMMEDIATE , settingsDesignator);

Note that the settings designator string also may be left empty or contain an
abstract reference name to a local settings designator.

10.3 The Federation Object Model
Each federation must have one or more FOM files (with the extension .xml), which
describes the objects and interactions to be used in the federation. The files can
easily be created using for example Pitch Visual OMT™.

The first thing that needs to be done is to create the federation execution. The
Create Federation Execution service takes one or more FOM files as argument.
This can be done by any federate. If a federation execution with the specified
name already exists, an exception is thrown and must be caught. The creation is
done with the following code:

vector<wstring> FOMmoduleUrls;
FOMmoduleUrls.push_back(L"Chat-evolved.xml");

try {
 _rtiAmbassador->createFederationExecution(L"ChatRoom", FOMmoduleUrls);
} catch (FederationExecutionAlreadyExists federationExecutionAlreadyExists) {
}

The parameters are the name of the federation (ChatRoom) and a vector of URLs
to FOM files.

When the federation is created the federate has to join the federation. This is
done with the following code:

 FederateHandle federateHandle = _rtiAmbassador->joinFederationExecution(
 L"Chat",
 L"ChatType",
 L"ChatRoom",
 FOMmoduleUrls

);

The first three parameters are the name of the federate, type of the federate and
the federation to join, respectively. The fourth parameter is a vector of URLs to
the FOM module files used when to joining. In our case, adding FOM-modules is
unnecessary since we have already created the federation with the same FOM-
modules, so this is just a way to illustrate how modules upon join are added.

Pitch pRTI™ User’s Guide Writing a simple federate in C++

Copyright  2016 Pitch Technologies Page 63[122]
July 2016

The federate is now a member of the federation. Note that a federate that
creates a federation execution is not automatically joined to that execution.

Objects and interactions are used to exchange data between federates in the
federation. Objects have attributes, and interactions have parameters, to describe
their characteristics. Only the use of interactions and parameters will be described
in this guide.

Each interaction and parameter is represented by a handle. The handles are
obtained from the RTI via the RTIambassador as in the code below.

InteractionClassHandle _iMessageId;
ParameterHandle _pTextId;
ParameterHandle _pSenderId;

_iMessageId = _rtiAmbassador->getInteractionClassHandle(L"Communication");
_pTextId = _rtiAmbassador->getParameterHandle(_iMessageId , L"Message");
_pSenderId = _rtiAmbassador->getParameterHandle(_iMessageId , L"Sender");

The parameter of the getInteractionClassHandle call is the name of the interaction
as specified in the FOM. The first parameter in the getParameterHandle call is the
interaction to which the parameter belongs and the second one is the name of
the parameter also as specified in the FOM.

The handles are the federate’s representation of interactions and parameters and
can be used when for example sending and receiving interactions.

10.4 Publishing and Subscribing to Information

The exchange of data is controlled by publishing and subscription of data. For an
interaction to be sent, the sending federate must first publish it. This means that it
tells every federate in the federation execution that it has some information and
that it wants to share it. For a federate to receive interactions of a certain class it
must subscribe to that interaction class. This means that all interactions of the
specified classes that are sent will only be delivered to the subscribing federate(s).

You can subscribe to the interaction class _iMessageId using the following code:

rtiAmbassador->subscribeInteractionClass(_iMessageId);

You will now receive all interactions of class _iMessageId that are published and
sent by other federates.

To publish the same interaction class, you use the following code:

_rtiAmbassador->publishInteractionClass(_iMessageId);

Other federates will now receive interactions sent by you (if they have subscribed
to them).

10.5 Sending Interactions
Before you send your interactions you must create a ParameterHandleValueMap
and add the interaction’s parameters and the values of them encoded according
to the FOM. The code looks like this:

ParameterHandleValueMap parameters;
HLAunicodeString hlaMessage(wstr_message);
HLAunicodeString hlaSender(wstr_sender);
parameters[_pTextId] = hlaMessage.encode();
parameters[_pSenderId] = hlaSender.encode();

Pitch pRTI™ User’s Guide Writing a simple federate in C++

Copyright  2016 Pitch Technologies Page 64[122]
July 2016

wstr_message and wstr_sender are the values of the parameters you want to
send (must be a wstring).

To send the interaction the following call is made:

_rtiAmbassador->sendInteraction(_iMessageId, _pHandleValueMap, VariableLengthData());

The first parameter is the interaction class handle, the second is the
ParameterHandleValueMap, holding the parameter values of the interaction and
the third is a user-supplied tag, in this case not set.

10.6 Receiving Interactions

When the RTI wants to send data to the federate it uses the methods (called
callbacks) specified in the FederateAmbassador class. In the chatcc example there
is only one callback implemented, namely receiveInteraction, which is called by
the RTI when an interaction sent by another federate is to be delivered to your
federate.

The receiveInteraction callback looks like this:

void receiveInteraction (
 InteractionClassHandle theInteraction,
 ParameterHandleValueMap const & theParameterValues,
 VariableLengthData const & theUserSuppliedTag,
 OrderType sentOrder,
 TransportationType theType,
 SupplementalReceiveInfo theReceiveInfo)
 throw (FederateInternalError)

The first parameter is the class of the received interaction and the second one is
the interaction’s parameters. The last three are not of interest here.

To get the parameter values out of the ParameterHandleValueMap you can for
example go through the map using a loop like this:

for (ParameterHandleValueMap::const_iterator i = theParameterValues.begin();
 i != theParameterValues.end(); ++i) {
 ParameterHandle const & handle = i->first;
 VariableLengthData const & value = i->second;
 if (handle == _pTextId) {
 message = HLAunicodeString(value);
 } else if (handle == _pSenderId) {
 sender = HLAunicodeString(value);
 }
 }

For each entry in the map you check the parameter handle. In this example, the
parameter value is decoded as a HLAunicodeString according to the FOM.

10.7 Conclusions

It is very easy to create a small federate. However, if you want to learn to use the
full potential of HLA, you should attend a HLA Hands On development course.
More information about this can be found at http://www.pitch.se.

Pitch pRTI™ User’s Guide Writing a Simple Federate in Java

Copyright  2016 Pitch Technologies Page 65[122]
July 2016

11 Writing a Simple Federate in Java

This section provides an introduction to writing your own HLA federate in Java. It
is not a complete HLA development guideline. A full tutorial for developing HLA
federates and federations is available separately on www.pitch.se. It is assumed
that you are familiar with the contents of chapter (6) Thus, this chapter does not
deal with compiling and linking your federate.

This introduction is based on the source code in the chat example provided with
the installation of Pitch pRTI™. The chat example is a small chat application that
lets users send messages to each other. The FOM used is shown in Figure 55.

Figure 55 – The FOM used in the ChatRoom federation.

11.1 The FederateAmbassador and the RTIambassador
There are two main Java interfaces to deal with developing a federate,
FederateAmbassador and RTIambassador.

The FederateAmbassador interface is the interface through which the RTI
communicates with the federate. The RTI sends messages to the federate by
invoking the methods in the FederateAmbassador class (invoking such a method is
generally referenced as invoking a callback).

When you write your own federate you implement the FederateAmbassador
interface with a class that implements all the available callback methods. There is
also the convenience class NullFederateAmbassador which simply provides empty
implementations of all the callback methods in the FederateAmbassdor interface.

When you develop your own federate you can simply subclass

NullFederateAmbassador and implement (override) the callbacks that you are
interested in.

http://www.pitch.se/

Pitch pRTI™ User’s Guide Writing a Simple Federate in Java

Copyright  2016 Pitch Technologies Page 66[122]
July 2016

RTIambassador is the class through which the federate communicates with the
RTI. The code looks like this:

 RtiFactory rtiFactory = RtiFactoryFactory.getRtiFactory();
 _rtiAmbassador = rtiFactory.getRtiAmbassador();

The first line is the default way of retrieveing an RtiFactory (mulitiple RTI-factories
may be available depending on which RTI:s that is installed on the computer). The
second line calls the RtiFactory to get an RTIambassador.

All communication between the federate and the RTI must go through the
FederateAmbassador and the RTIambassador interfaces.

11.2 Connecting to the RTI
Before creating and joining federation executions, the federate must connect to
the RTI. This is done through the following code:

String settingsDesignator = "crcAddress=" + rtiHost + ":" + Integer.toString(CRC_PORT);
_rtiAmbassador.connect(this, CallbackModel.HLA_IMMEDIATE, settingsDesignator);

Note that the settings designator string also may be left empty or contain an
abstract reference name to a local settings designator.

11.3 The Federation Object Model
Each federation must have one or more FOM files (with the extension .xml), which
describe the objects and interactions to be used in the federation. The files can
easily be created using for example Visual OMT™ 1516.

The first thing that needs to be done is to create the federation execution. The
Create Federation Execution service takes one or more FOM files as an argument.
This can be done by any federate. If a federation execution with the specified
name already exists, an exception is thrown and must be caught. The creation is
done with the following code:

File fddFile = new File("Chat-evolved.xml");
 try {
 _rtiAmbassador.createFederationExecution(“ChatRoom”, fddFile.toURL());
 } catch (FederationExecutionAlreadyExists ignored) {
 }

The parameters are the name of the federation (ChatRoom) and the URL
representation of the single FOM file to use in this case (Chat-evolved.xml).

When the federation is created the federate has to join the federation. This is
done with the following code:

FederateHandle federateHandle = _rtiAmbassador.joinFederationExecution("Chat", "ChatType",
“ChatRoom”, new URL[]{fddFile.toURL()});

The first three parameters are the name of the federate, type of the federate and
the name of the federation to join, respectively. The fourth parameter is an array
of URLs to FOM files that the federate wants to bring to the federation. In our
case, adding FOM-modules is unnecessary since we have already created the
federation with the same FOM-modules, so this is just a way to illustrate how
modules upon join are added.

The federate is now a member of the federation. Note that a federate that
creates a federation execution is not automatically joined to that execution.

Pitch pRTI™ User’s Guide Writing a Simple Federate in Java

Copyright  2016 Pitch Technologies Page 67[122]
July 2016

Objects and interactions are used to exchange data between federates in the
federation. Objects have attributes, and interactions have parameters, to describe
their characteristics. Only the use of interactions and parameters will be described
in this guide.

Each interaction and parameter is represented by a handle. The handles are
obtained from the RTI via the RTIambassador as in the code below.

InteractionClassHandle _messageId;
ParameterHandle _parameterIdText;
ParameterHandle _parameterIdSender;

_messageId = _rtiAmbassador.getInteractionClassHandle("Communication");
_parameterIdText = _rtiAmbassador.getParameterHandle(_messageId, "Message");
_parameterIdSender = _rtiAmbassador.getParameterHandle(_messageId, "Sender");

The parameter of the getInteractionClassHandle call is the name of the interaction
as specified in the FOM file. The first parameter in the getParameterHandle call is
the interaction to which the parameter belongs and the second one is the name
of the parameter.

The handles are the federate’s representation of interactions and parameters,
and can be used when for example sending and receiving interactions.

11.4 Publishing and Subscribing to Information
The exchange of data is controlled by publishing and subscription of data. For an
interaction to be sent the sending federate must first publish it, which means that
it tells everyone that it has some information and that it wants to share it. For a
federate to receive interactions of a certain class it must subscribe to that
interaction class. This means that all interactions of the specified classes that are
sent will only be delivered to the subscribing federate(s).

You can subscribe to the interaction class _messageId using the following code:

_rtiAmbassador.subscribeInteractionClass(_messageId);

You will now receive all interactions of class _messageId that are published and
sent by other federates.

To publish the same interaction class, you use the following code:

_rtiAmbassador.publishInteractionClass(_messageId);

Other federates will now receive interactions sent by you (if they have subscribed
to them).

11.5 Sending Interactions

Before you send your interactions you must create a ParameterHandleValueMap
and add the interaction’s parameters and the values of them encoded according
to the FOM. The code looks like this:

ParameterHandleValueMap parameters;
parameters = _rtiAmbassador.getParameterHandleValueMapFactory().create(1);
HLAunicodeString messageEncoder = _encoderFactory.createHLAunicodeString();
HLAunicodeString nameEncoder = _encoderFactory.createHLAunicodeString();
messageEncoder.setValue(_message);
nameEncoder.setValue(_username);
parameters.put(_parameterIdText, messageEncoder.toByteArray());
parameters.put(_parameterIdSender, nameEncoder.toByteArray());

Pitch pRTI™ User’s Guide Writing a Simple Federate in Java

Copyright  2016 Pitch Technologies Page 68[122]
July 2016

_message and _username are the values of the parameters you want to send. The
ParameterHandleValueMap is based on the java.util.Map interface and uses a
ParameterHandle as the key and a value as the value.

To send the interaction the following call is made:

_rtiAmbassador.sendInteraction(_messageId, parameters, null);

The first parameter is the interaction class handle, the second is the
ParameterHandleValueMap, holding the parameter values of the interaction and
the third is a user-supplied tag, in this case set to null.

11.6 Receiving Interactions
When the RTI wants to send data to the federate it uses the methods (called
callbacks) specified in the FederateAmbassador class. The methods are all empty
in the FederateAmbassadorImpl class, which means that you only have to
implement the callbacks you are interested in your subclass. In the chat example
there is only one callback implemented, namely receiveInteraction, which is called
by the RTI when an interaction sent by another federate is to be delivered to your
federate.

The receiveInteraction callback looks like this:

public void receiveInteraction(InteractionClassHandle interactionClass,
 ParameterHandleValueMap theParameters,
 byte[] userSuppliedTag,
 OrderType sentOrdering,
 TransportationTypeHandle theTransport,
 SupplementalReceiveInfo receiveInfo)

The first parameter is the class of the received interaction and the second one is
the interaction’s parameters. The last four are not of interest here.

To get the parameter values out of the ParameterHandleValueMap you can for
example go through the map using a for loop like this:

String message;
String sender;
for (Iterator i = theParameters.keySet().iterator(); i.hasNext();) {
 ParameterHandle parameterHandle = (ParameterHandle) i.next();
 if (parameterHandle.equals(_parameterIdText)) {
 HLAunicodeString messageDecoder = _encoderFactory.createHLAunicodeString();
 messageDecoder.decode((byte[]) theParameters.get(_parameterIdText));
 message = messageDecoder.getValue();
 }
 else if (parameterHandle.equals(_parameterIdSender)) {
 HLAunicodeString senderDecoder = _encoderFactory.createHLAunicodeString();
 senderDecoder.decode((byte[]) theParameters.get(_parameterIdSender));
 sender = senderDecoder.getValue();
 }
}
System.out.println(sender + “: “ + message);

For each entry in the map you check the parameter handle. In this example, the
parameter value is decoded according to the FOM.

11.7 Conclusions
It is very easy to create a small federate. However, if you want to learn to use the
full potential of HLA, you should attend a HLA Hands On development course.
More information about this can be found at http://www.pitch.se.

Pitch pRTI™ User’s Guide Writing a Simple Federate in Java

Copyright  2016 Pitch Technologies Page 69[122]
July 2016

Pitch pRTI™ User’s Guide Tick and Process Models

Copyright  2016 Pitch Technologies Page 70[122]
July 2016

12 Tick and Process Models

Whether you are migrating from another RTI or developing new federates you will
need to think about the process model. This will affect the federate developer in
the following ways:

 It will affect the performance and responsiveness of the federation as well
as how difficult it will be to tune the final federation.

 It will affect the way the program code is structured.

12.1 Setting the process model
When connecting to the RTI using the RTI-ambassador call connect you may have
noticed that one of the parameters is an callback-model enumerator. This
parameter sets the federate’s process model. HLA Evolved has two types of
process models:

 HLA_IMMEDIATE, which provides a multi threaded process model.

 HLA_EVOKED, which is a single threaded, or “evoked”, process model.

Using the evoked process model, callbacks are not immediately delivered,
but instead only delivered when the federate makes the RTI-ambassador
calls evokeMultipleCallbacks() or evokeCallback().

12.2 Practical Guidelines
If you are migrating a federate from an RTI which is not multi-threaded such as
RTI:NG you have two choices:

 For the fastest porting: Disable multi-threading by simply setting the
callback model to HLA_EVOKED. Tune parameters and tick frequency until
you get satisfactory performance.

 For the best performance and responsiveness: Set the callback model to
HLA_IMMEDIATE. Make sure that your federate can handle callbacks
anytime. Remove or disable calls to tick since they are unnecessary and may
consume CPU resources.

If you are developing a new federate:

 Simply design your federate so that it can handle callbacks anytime. Use
HLA_IMMEDIATE. Do not call tick or make a call that can easily be disabled.

You are also recommended to limit the amount of work that your federate does in
the callback from the RTI. A federate which spends a lot of time in the callback
may reduce the performance for operations that are coordinated across the
federation, such as time management.

12.3 Explanation of Process Models
The process model can be explained in the following way: There is a Local RTI
Component running on the same computer and usually in the same process as
your federate (simulation). It needs to do internal work, such as reading incoming
network information. It also needs to deliver information to your simulation. So
when can the RTI perform its internal processing?

Pitch pRTI™ User’s Guide Tick and Process Models

Copyright  2016 Pitch Technologies Page 71[122]
July 2016

 In a single-threaded RTI it will only perform internal processing when you
call the tick function. Callbacks to your federate will also be delivered during
this call. If you do not call the tick function with the optimal frequency and
optimal parameters the performance will suffer. These parameters will vary
depending on federates, hardware, network, scenario and more. The RTI
may also suffer from starvation if tick is not called often enough. Few RTI
implementations rely on this method today.

 In an asynchronous RTI the internal processing will be done automatically,
independent of your tick calls. Callbacks will only be delivered when you call
tick. The performance tuning issue remains but there is no risk for
starvation.

 In a multithreaded RTI the internal processing will be done automatically.
Callbacks will be delivered as soon as new information is available. There is
no need to call tick and no tick frequency or parameters to tune. The
performance and responsiveness will be optimal from the RTI standpoint
but will still of course be dependent on your federate.

The multithreaded strategy is recommended but the asynchronous strategy is also
supported by Pitch pRTI™. The tick strategy only affects the Local RTI Component.
A federation using Pitch pRTI™ may mix federates with different process models.
A federate which is not multithreaded and with inferior tick tuning, may reduce
the performance of the entire federation.

Read more about process models in the SIW paper 03S-SIW-055 available from
SISO (http://www.sisostds.org).

Pitch pRTI™ User’s Guide Debugging and Tracing

Copyright  2016 Pitch Technologies Page 72[122]
July 2016

13 Debugging and Tracing

13.1 Overview
The call tracing feature allows you to inspect the communication between a
federate and the Local RTI Component. This communication may occur according
to the following pattern:

FederateAmbassador

Federate

RTIambassador

Local RTI Component

callbackcall

Figure 56 – Calls and callbacks.

The federate initially calls the RTI Ambassador to create a federation execution
and to join it. It then calls the RTI Ambassador to declare its need to produce and
consume information (publish and subscribe). During the execution it then calls
the RTI Ambassador to register new objects, send updates for attributes, send
interactions, etc. If you are a federate developer your program will call the
methods of the RTI Ambassador.

The RTI delivers callbacks to the Federate Ambassador, for example information
about new objects (discoveries) and updates and interactions received from other
federates. If you are a federate developer you will need to implement a Federate
Ambassador to handle the information that will be delivered to your federate.

Calls and callbacks can be logged using the call-tracing feature. This is useful for
example:

 When you develop your federate to make sure that your program interacts
with the RTI in the way that you intended.

 When you test your entire federation to analyze for example which
information your federate sends and what information was delivered to
your federate.

There is no functionality to store large amounts of data into databases or playing
back log files from previous sessions. There are however other tools on the
market that can do this for you.

Pitch pRTI™ User’s Guide Debugging and Tracing

Copyright  2016 Pitch Technologies Page 73[122]
July 2016

13.2 Enabling the Tracing
The recommended way to configure trace settings is to use the Trace Settings
graphical editor which can be found in the start menu or in the bin directory in
your Pitch pRTI™ installation.

The trace settings editor opens a file called pRTI1516e.logging in the prti1516e
subdirectory of your home directory (e.g. C:\Documents and
Settings\username\prti1516e on Windows). Editing this file using the trace
settings editor will enable you to trace the federation startup.

Specify a filename (including the absolute path, e.g. C\:\\mylog.txt) instead of
<console> to make the trace output appear in a file. Note the extra backslash (\)
characters that are required when specifying a file.

13.3 Format of the Trace Log
The format of the trace log is as follows:

<Timestamp>: <Federate number> <Direction> <Method>(<Parameters>) => <Return value>

Timestamp is given in milliseconds for the local computer. It is not guaranteed to
be synchronized between different computers.

Federate number is the number that the federate was given when it joined the
federation. Initially it will be zero (before joining).

Direction is << for calls from the Federate to the RTI Ambassador and >> for calls
from the RTI to the Federate Ambassador.

Method is the name of the method, for example joinFederationExection.

Parameters is the list of parameter values. In case this is your FOM data the hex
value will be displayed since the RTI has no knowledge about the correct
interpretation.

Return value may also be shown in some cases.

13.4 A Sample Trace Log
The sample trace log below shows parts of the log of one of the chat federates in
the installation verification from section 3.3 in this manual.

Notice the receiveInteraction with the hex code (marked with boldface) for “Hello
Fred” in ASCII. Hint: space=20, A=40, a=60.

05:53:08:498 (2005.03.03): fed0 << destroyFederationExecution(ChatRoom) => Federation
Execution Does Not Exist (909146015)
05:53:09:107 (2005.03.03): fed0 << createFederationExecution(ChatRoom, file:/C:/Program
Files/prti1516/samples/chat/Chat.xml)
05:53:09:811 (2005.03.03): fed2 << joinFederationExecution(Chat, ChatRoom,
se.pitch.Chat1516.Chat@13adc56, null) => federate<2>
05:53:09:842 (2005.03.03): fed2 << getInteractionClassHandle(Communication) => Interaction
class<2>
05:53:09:842 (2005.03.03): fed2 << getParameterHandle(Interaction class<2>, Message) =>
parameter<100>
05:53:09:842 (2005.03.03): fed2 << getParameterHandle(Interaction class<2>, Sender) =>
parameter<101>
05:53:09:842 (2005.03.03): fed2 << subscribeInteractionClass(Interaction class<2>)
05:53:09:857 (2005.03.03): fed2 << publishInteractionClass(Interaction class<2>)
05:53:09:857 (2005.03.03): fed2 << getObjectClassHandle(Participant) => objectClass<5>
05:53:09:857 (2005.03.03): fed2 << getAttributeHandle(objectClass<5>, Name) =>
attribute<139>

Pitch pRTI™ User’s Guide Debugging and Tracing

Copyright  2016 Pitch Technologies Page 74[122]
July 2016

05:53:09:857 (2005.03.03): fed2 << subscribeObjectClassAttributes(objectClass<5>,
{attribute<139>})
05:53:09:857 (2005.03.03): fed2 << publishObjectClassAttributes(objectClass<5>,
{attribute<139>})
05:53:13:514 (2005.03.03): fed2 << reserveObjectInstanceName(Fred)
05:53:13:529 (2005.03.03): fed2 >> objectInstanceNameReservationSucceeded(Fred)
05:53:13:529 (2005.03.03): fed2 << registerObjectInstance(objectClass<5>, Fred) =>
instance<101>
05:53:13:545 (2005.03.03): fed2 << updateAttributeValues(instance<101>, {attribute<139>,
[46726564]}, [])
05:53:13:561 (2005.03.03): fed2 << requestAttributeValueUpdate(objectClass<5>,
{attribute<139>}, [])
05:53:39:310 (2005.03.03): fed2 >> discoverObjectInstance(instance<103>, objectClass<5>,
Barney)
05:53:39:342 (2005.03.03): fed2 >> provideAttributeValueUpdate(instance<101>,
{attribute<139>}, [])
05:53:39:342 (2005.03.03): fed2 >> reflectAttributeValues(instance<103>, {attribute<139>,
[4261726e 6579]}, [], OrderType(1), TransportationType(1))
05:53:39:357 (2005.03.03): fed2 << updateAttributeValues(instance<101>, {attribute<139>,
[46726564 00]}, [])
05:53:41:920 (2005.03.03): fed2 >> receiveInteraction(Interaction class<2>, {parameter<100>,
[48656c6c 6f204672 656400], parameter<101>, [4261726e 657900]}, [], OrderType(1),
TransportationType(1))

Pitch pRTI™ User’s Guide Networking

Copyright  2016 Pitch Technologies Page 75[122]
July 2016

14 Networking

This section covers advanced networking topics. For most Pitch pRTI™ users there
will seldom be any need to read this chapter. The default networking settings for
Pitch pRTI™ will yield the best performance and compatibility for many needs.
Before you get into network tuning you should consider the following:

1. Be sure that you have designed the federation in the spirit of HLA. Do not
try to replicate all of the information between all federates, only subscribe
to the necessary objects, attributes and interactions. Use DDM where
appropriate to limit the information further.

2. The biggest performance gain is usually achieved by simply adding faster
networking hardware for example by upgrading from 10 Mbit networking to
100 Mbit or from 100 Mbit to Gigabit Ethernet.

3. One of the big advantages with Pitch pRTI™ compared to many other RTI:s is
that it uses sender side filtering. Only the necessary information is sent to
federates that subscribe to it. This means that by simply replacing hubs with
switches you may experience big performance improvements.

4. To achieve higher responsiveness and throughput in your federation you are
also highly recommended to use multi-threaded federates instead of ticked
federates. Note that a federation may mix the two types of federates. Read
more in chapter 12.

14.1 When to Reconfigure Networking
There are a few situations where advanced users may want to change the default
settings:

1. You have several network interface cards and you do not want to run RTI
communications on all of them.

2. You need to configure Pitch pRTI™ to run through firewalls. Note that since
firewalls are intended to stop unwanted communications you will need to
do this in cooperation with your network administrator.

3. You have extremely high requirements for throughout or update rate and
you are willing to sacrifice some compatibility with wide area networks.

4. You are losing too many best effort messages.

Reconfiguring Pitch pRTI™ networking will not have any impact on situations
where:

1. The latency (delay) on the network between two sites is too large.

2. The total amount of information that a federate subscribes to exceed the
capacity of the link to that federate.

3. Some federates can only process a limited amount of incoming information
per second, thus lowering the throughput or update rate. It may also be the
case that some federates do a lot of work in the RTI callbacks, thus reducing
the number of updates and other RTI operations per second (federate
callback latency).

Pitch pRTI™ User’s Guide Networking

Copyright  2016 Pitch Technologies Page 76[122]
July 2016

The rest of this chapter assumes that you are familiar with networking concepts
such as TCP/IP and UDP/IP protocols, port numbers, unicast and multicast, routing
and firewalls.

14.2 Overview of Pitch pRTI™ Communication
When the pRTI™ components (CRC and LRC:s) of a federation start, they will
establish communication links with each other. The following types of
communication links are used:

1. RTI components in the same process automatically use shared memory
queues for reliable communication. One such example is LRC:s of two
federates executing in the same Java Virtual Machine.

2. RTI components in different processes and possibly on different computers
use TCP/IP for reliable communication point-to-point.

3. UDP/IP (point-to-point or multicast) is used for best effort.

All the communication links for a federation can be inspected in the Pitch pRTI™
GUI in the Network Info pane as Figure 57 shows.

Figure 57 – The network connections between the LRC:s and the CRC.

You can see the following network links:

 CRC-LRC TCP Connection, which is a reliable connection between the CRC
and LRC. One such connection will be made for each LRC. For each such
connection there is also a corresponding LRC-CRC TCP Connection.

 LRC-LRC TCP Connection, which is a reliable connection between two
federates. Each LRC will make one connection of this type to each one of the
other LRC:s.

Pitch pRTI™ User’s Guide Networking

Copyright  2016 Pitch Technologies Page 77[122]
July 2016

Note that for the CRC there is a Master TCP port that the CRC listens on, by
default 8989. There may also be a Multicast address and port if multicast is
enabled.

For the LRC:s there are two Master ports, one for TCP (by default 6000) and one
for UDP (by default 5000).

The CRC network address and master port as well as the multicast address and
port may be configured in the GUI. See section 16.1 for more information.

The LRC network address and ports may be configured for each LRC. The default
port range for TCP is 6000 – 6999 and for UDP 5000 – 5999. An LRC will usually
use several TCP ports but only one UDP port. See section 16.2 for more
information.

14.3 Using Multicast
You can switch on multicast for best effort communication. This means that the
information is sent once in a packet that many federates can receive instead of
several transmissions, one for each federate.

Advantages:

 Efficient when many federates subscribe to the same information since it is
only sent once.

Disadvantages:

 If there are routers between federates, they will probably need to be
reconfigured to let multicast traffic through.

 You may actually increase the network load as well as the workload for each
LRC since federates may now receive information that they do not need.

When multicast is enabled, Pitch pRTI™ will automatically sense when many
federates start to subscribe to best effort information and switch over from point-
to-point UDP to multicast UDP.

14.4 Operating over Firewalls
To have a federate (LRC) operating behind a firewall you will need to open some
ports for incoming traffic from other federates. A stateful packet inspection
firewall (or router filters) is assumed. It is also assumed that you only have one
federate per host.

1. For N federates, start by limiting the port range to N+1 TCP ports and one
UDP port. Assign the same port range to all federates on all hosts.

2. Open the specific port ranges (TCP and UDP) for incoming connections from
the IP addresses of the other federates.

3. The above has to be applied for each federate behind a firewall.

4. Avoid using multicast.

A federate that is number M to start will actually use M+1 incoming TCP ports and
one incoming UDP port. You are recommended not to rely on the start order
when configuring firewalls.

You may also consider establishing an encrypted VPN between sites.

Pitch pRTI™ User’s Guide Networking

Copyright  2016 Pitch Technologies Page 78[122]
July 2016

To run the CRC behind a firewall you will need to open the CRC Master port in the
firewall for incoming TCP connections from all federate addresses.

14.5 Network Settings
All network settings for the CRC are accessible from the CRC Settings editor
application as shown in Figure 58.

Figure 58 – Changing the settings for the CRC.

See section 16.1 for more information on changing the CRC settings.

For the LRC the network settings are available in both the LRC GUI shown in Figure
59 and in a settings file.

Pitch pRTI™ User’s Guide Networking

Copyright  2016 Pitch Technologies Page 79[122]
July 2016

Figure 59 – Changing the settings for the LRC.

See section 16.2 for more information on changing the LRC settings.

14.6 Pitch pRTI™ and Pitch Booster™
By default Pitch pRTI™ offers excellent performance on a LAN (Local Area
Network). For WAN (Wide Area Network) such as the Internet or a corporate
network, the capacity (bandwidth, latency) is more limited than on a LAN. To be
able to offer the best possible performance for WAN an additional component for
Pitch pRTI™ is available: the Pitch Booster™. The Pitch Booster™ is a separately
licensed product.

The normal configuration is as follows. One Pitch Booster™ is configured for each
site.

Pitch pRTI™ User’s Guide Networking

Copyright  2016 Pitch Technologies Page 80[122]
July 2016

Figure 60 – The Pitch Booster™ topology.

The Pitch Booster™ provides a number of advantages:

1. Easier to run simulation between different sites, especially across firewalls.

2. Run several RTIs and several federations at the same time.

3. Discover RTIs and federates between several sites. It doesn’t matter where
you run the central RTI component.

4. Improved bandwidth usage, performance and scalability. Data send through
the Pitch Booster™ is concentrated on the sending side and exploded on the
receiving side.

5. Improved reliability. Less “best-effort” data will be lost.

6. Less work on the federate side. The work with sending updates will be
handled by the Pitch Booster™ on behalf of the federates.

7. Improved security handling. When running over an open WAN only the
Booster needs to communicate over the WAN. This will reduce the firewall
configuration required.

14.6.1 Configuring the LRC and CRC for Pitch Booster™

To enable the use of the Pitch Booster™, open the CRC network settings editor, go
to the Booster tab, choose Booster Mode instead of Direct Mode and specify the
address of the Booster. In case the host running Pitch Booster™ has several
addresses it is necessary to specify an address belonging to the LAN subnet.

For the CRC, you must also specify a CRC nickname which is a name that is unique
among all CRCs in your Booster network. This name will be used by federates in
the Booster network to address your CRC, as the setting of the CRC-host property
in the local settings designator. See Pitch Booster™ User’s Guide for more
information about CRC nicknames.

The LRC is told to use booster for communication by the way that CRC address is
formatted. The format is: <CRC-name>@<local-booster-address:port>

So, connecting your federate to a CRC named "MyCRC" accessible through your
booster network, and your local booster is running at 192.168.1.20:8688 can be
done by formatting the CRC address as follows:

Pitch pRTI™ User’s Guide Networking

Copyright  2016 Pitch Technologies Page 81[122]
July 2016

MyCRC@192.168.1.20:8688

Figure 61 – Enabling Pitch Booster™ through the CRC and LRC Settings.

Pitch pRTITM User’s Guide Advanced Pitch pRTI™ Network Performance Tuning

Copyright  2016 Pitch Technologies Page 82[122]
July 2016

15 Advanced Pitch pRTI™ Network

Performance Tuning

15.1 Introduction

By default, Pitch pRTI™ is tuned for minimal latency over local area networks with
high capacity. This means that in many cases there is no need to tune Pitch pRTI™,
especially during the early federation development phase. When you deploy your
federation and scale up you are likely to get closer to the capacity of participating
components such as networks, computers and federates. This chapter gives you
more insights into the advanced tuning possibilities that Pitch pRTI™ offers.

There are several powerful ways to tune the network performance of Pitch pRTI™.
Tuning means that you adapt the behavior of the RTI to meet the specific needs of
your federation or to compensate for limitations in your network or federates. In
many cases it also means that you are willing to trade one type of performance
for another.

Some of the performance improvements that can be achieved by tuning are:

 Reduced latency, that is, the time it takes for an update to travel to another
federate.

 Increased throughput, that is, the number bytes transmitted per second.

 Increased update rate, that is, the number of updates transmitted per
second, which is very similar to the previous.

 Reduced loss for updates that use the best-effort transportation type.

You should try to get some type of performance metrics for your specific
federation before you tune:

 In order to verify that you actually do have a performance problem.

 To compare with your predicted performance figures and

 In order to determine when you tuning affects the federation performance
in the desired way.

15.2 Federate Tuning
RTI network tuning may be very useful but the performance of the federates may
be just as important to make your federation run well. Two common situations
where the RTI performance is reduced by federates are:

 A federate does not consume incoming messages as fast as the senders
produce them. For best-effort updates these may be discarded. Some tuning
parameters for this are described below. For reliable updates, interactions,
object discoveries, etc, it is not acceptable to discard messages. This means
that these messages will be queued and potentially slow down the sending
federate and the entire federation.

 A federate spends a lot of time in each call to the FederateAmabassador
(callbacks from the RTI). This prevents the RTI from delivering additional
messages. This may in some cases reduce the speed both for other
federates and the entire federation.

Pitch pRTITM User’s Guide Advanced Pitch pRTI™ Network Performance Tuning

Copyright  2016 Pitch Technologies Page 83[122]
July 2016

Both of these cases will usually result in a federate having a large queue of
incoming messages. Use the Pitch pRTI™ DUMP command (issued in the Pitch
pRTI™ console) to check the FIFO and TSO queue lengths if you suspect that you
may have these problems.

15.3 Setting Tuning Parameters
There are two basic ways to set tuning parameters:

1. Using presets: There are a number of predefined settings for common
situations. By simply selecting the preset that most closely matches your
needs you may improve the performance.

2. Advanced tuning: You can also adjust each parameter individually. Detailed
instructions for this are provided below. We recommend that you use one
of the presets as a starting point for this type of tuning.

Before you start tuning it is useful to understand that Pitch pRTI™ is tuned by
default and that the default tuning is for minimal latency (i.e. minimum delay
between federates).

15.3.1 Using Presets

You can tune each federate individually based on:

 The optimization criteria (latency, loss rate, etc).

 How it produces and consumes information from other federates.

 Network properties.

To tune, simply ensure that the federate is not running, open the LRC Settings GUI
and select the Tuning tab as shown in Figure 62.

Pitch pRTITM User’s Guide Advanced Pitch pRTI™ Network Performance Tuning

Copyright  2016 Pitch Technologies Page 84[122]
July 2016

Figure 62 – The tuning settings in the LRC Settings GUI.

Pitch pRTITM User’s Guide Advanced Pitch pRTI™ Network Performance Tuning

Copyright  2016 Pitch Technologies Page 85[122]
July 2016

To select a preset simply select it in the tuning preset pop-up window. The
predefined presets included with Pitch pRTI™ are listed in Table 1.

Pitch pRTITM User’s Guide Advanced Pitch pRTI™ Network Performance Tuning

Copyright  2016 Pitch Technologies Page 86[122]
July 2016

Preset Name Description

Minimal latency (default) Provides minimal latency. Makes no attempt
to minimize best-effort loss

Large peaks of small updates
on T1 WAN

Improves performance and reduces loss over
a T1 (1 Mbps) link with 100 byte updates
with peaks.

Large peaks of small updates
on LAN

Improves performance and reduces loss over
a 100 Mbit LAN with 100 byte updates with
peaks.

High even data rate of small
updates

Improves performance and reduces loss over
a 100 Mbit LAN with 100 byte updates
without peaks.

Slow consumer of updates Reduces incoming data rate for low-
performing federates

Table 1 – Available Pitch pRTI™ tuning presets.

Each preset is stored in a separate file in the prti1516e subdirectory of the user
home directory (e.g. C:\Documents and Settings\username\prti1516e on
Windows). Advanced users may define additional presets and add to this
directory.

15.3.2 Advanced Tuning

Before you do advanced tuning you need to know some characteristics of your
federation. Following are some of the most important questions that you need to
answer to do effective tuning.

General Strategy

1. Is some latency acceptable in order to reduce best effort loss or increase
throughput for best-effort and reliable? (y/n)

2. Is this federate expected to consume incoming updates at a significant
slower rate than senders will produce updates? (y/n)

3. If this federate sends best effort data faster than other federates can
receive, how do you want to handle this? Reduce this federates speed or
discard data?

4. If this federate sends reliable data faster than other federates can receive,
how do you want to handle this? Reduce this federates send speed or throw
an exception for this federate.

Connection

1. Are you running over a WAN or LAN?

2. What is the bandwidth of the LAN? (10/100/1000 Mbit/s)

3. What is the bandwidth of the WAN? (x kb/s)

Outgoing Best-Effort Data

1. What is the typical size for best effort data? (bytes)

2. What is the typical rate for best effort data? (Hz)

Pitch pRTITM User’s Guide Advanced Pitch pRTI™ Network Performance Tuning

Copyright  2016 Pitch Technologies Page 87[122]
July 2016

3. Do you have peaks in the update rate from time to time? (y/n)

Outgoing Reliable Data

1. What is the typical size for reliable data? (bytes)

2. What is the typical rate for reliable data? (Hz)

Incoming Best-Effort Data

1. Is it acceptable to discard older updates in order to keep up with newer
updates? (y/n)

2. After what time can an update be considered old enough to be discarded?

Based on your answers to these questions you can determine the parameters of
the network tuning algorithms that pRTI™ 1516 offers.

15.4 Pitch pRTI™ Tuning Algorithms

Figure 63 describes the chain of tuning algorithms used by Pitch pRTI™.

Figure 63 – Pitch pRTI™ tuning algorithms.

Note that the order between the algorithms is fixed but you can choose which
ones that you want to use and which ones that you want to bypass. Below is a
detailed description of each of these algorithms referred to as A to E in Figure 63.

15.4.1 Algorithm A – Bundling

Instead of sending each update individually the RTI may wait for more messages
and bundle them. You may want to specify how long the RTI should wait and a
limit for the size of the bundle.

Pros: Increased throughput. Also reduces loss for best-effort.

Cons: Increased latency, up to the wait time value.

Table 2 describes the parameters which the bundling algorithms requires.

Pitch pRTITM User’s Guide Advanced Pitch pRTI™ Network Performance Tuning

Copyright  2016 Pitch Technologies Page 88[122]
July 2016

Parameter Name How To Calculate

Max bundle size (byte) Depends on the type of link used. Traditional
Ethernet and WAN links often have 1500
bytes. Gigabit with Ethernet has 9000 bytes.
Best-effort on LAN should not exceed 64000
bytes. Slow serial links may have less than
1500. Advanced users may also want to
examine the Maximum Transmission Unit
(MTU) using the operating system command
“ping –f –l <size> <host>”.

Max hold time (ms) Lower than 1/Update rate (Hz). To
compensate for unsynchronized federates
you may want to use less than half of the
time. For a 50 Hz update rate this means less
than half of 20 ms.

Table 2 – Bundling parameters.

15.4.2 Algorithm B and C – Limit Bandwidth Usage

These algorithms limit the outgoing message rate by smoothing out peaks and
either limiting the updates produced or dropping outgoing best-effort messages.
See section 15.4.3 and 15.4.4 for detailed descriptions of these two algorithms.

Table 3 lists the parameters required by theses algorithms to limit the data rate.
The algorithms will limit the rate based on the lower of these two values.

Parameter Name How To Calculate

Max messages If there are limitations on how many updates
receiving federate can consume, use the
highest value for this parameter.

Max bandwidth If there are limitations on the bandwidth
that this federate can use then use this
parameter.

Table 3 – Throttling parameters.

15.4.3 Algorithm B – Smooth Out Peaks

Some federates produce updates for all of their objects at a certain point in time.
This may result in a large number of updates in a short time. Especially for best-
effort this may be a problem since the network may discard a large amount of the
messages. For both best-effort and reliable it may result in large temporary loads
on receiving federates.

The bandwidth is determined by the parameters listed in Table 3. The buffer size
parameter listed in Table 4 can be determined by the user. It is important that the
average data flow from the federate does not exceed the maximum values
specified by the parameters listed in Table 3. Otherwise the buffer will be filled
and algorithm C or D will be activated.

Pros: Increased throughput. Also reduces loss for best-effort.

Cons: Increased latency.

Pitch pRTITM User’s Guide Advanced Pitch pRTI™ Network Performance Tuning

Copyright  2016 Pitch Technologies Page 89[122]
July 2016

Parameter Name How To Calculate

Buffer size Bigger than the time interval between peaks
multiplied by the average bandwidth
(including the peaks).

Table 4 – Smoothing parameters.

15.4.4 Algorithm C – Drop Best-Effort Messages or Block Sender

If the desired data rate cannot be achieved then Pitch pRTI™ needs to reduce
the data rate. For best-effort this can be done by simple discarding the data.
Another option is to prevent the federate from producing more data by simply
not returning from the send call until the data has been sent. This will prevent the
federate temporarily from making additional send calls.

Pros: Reduces data flow. Reduces the load for other federates.

Cons: Data loss or federate slowed down.

15.4.5 Algorithm D – Block Sending of Reliable Messages or
Produce Warning

If the desired data rate cannot be achieved then Pitch pRTI™ needs to reduce
the data rate. For reliable data this can be done by preventing the federate from
producing more data by simply not returning from the send call until the data has
been sent. This will prevent the federate temporarily from making additional send
calls. Another option is to exceed the data rate and send a warning to the event
log. This may be used as input for modifying the design of the federate or the
federation.

Pros: Reduces data flow. Reduces the load for other federates.

Cons: Federate may be slowed down.

15.4.6 Algorithm E – Drop Old Incoming Best-Effort Messages

If a federate consumes data at a slower rate than it arrives, it will start lagging
behind. At some point in time the memory will eventually run out. In many cases
it makes no sense for a federate to consume older updates when newer updates
have already arrived. The RTI can discard older data. This technique can only be
applied for best-effort data.

Pros: Reduced federate load.

Cons: Data loss.

Table 5 lists the parameters used by this algorithm.

Parameter Name How To Calculate

Pitch pRTITM User’s Guide Advanced Pitch pRTI™ Network Performance Tuning

Copyright  2016 Pitch Technologies Page 90[122]
July 2016

Parameter Name How To Calculate

Drop unprocessed messages
after x seconds

This parameter should be larger than the
time between incoming updates. You may
for example set this parameter to 2 – 3 times
higher. A lower number will make the
federate more responsive but increase the
risk that the federate does not get any data
at all.

Table 5 – Old incoming message discarding parameters.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 91[122]
July 2016

16 Configuration Reference

This section contains a list of all the configuration switches that can be set in Pitch
pRTI™. Normally, you do not need to use any of these configuration switches.
They are intended for advanced users.

16.1 Settings for the Central RTI Component
The settings for the CRC can be modified from the pRTI™ Explorer user interface
shown in Figure 64.

Figure 64 – The CRC specific settings.

Click the Change Settings button to modify the settings. Make the necessary
changes and then restart Pitch pRTI™.

Note that all the settings are saved to a file called pRTI1516eCRC.settings. This file
is located in the prti1516e directory located in your user home directory (e.g.
C:\Documents and Settings\username\prti1516e on Windows). This is where the
settings are saved when clicking "save as user settings" and these settings are
used when running the CRC on the desktop as a logged in user.

When running the CRC in service mode, the settings will be read from a file with
the same name (pRTI1516eCRC.settings) located in a system wide location. The
system wide location is the pRTI installation directory on Windows, and
/etc/prti1516e on Linux and Mac OS X. This is where the settings are being saved
when clicking "save as system settings".

If you wish to use a pRTI1516eCRC.settings file located elsewhere, e.g. if you wish
to run multiple CRC:s on the same computer you can use the Java property
settings.dir when starting the CRC as shown below, an specify it in the .vmoptions
file (pRTI1516e.vmoptions for the CRC running on the desktop and pRTI1516e-
service.vmoptions for the CRC running in service mode, both located in the bin
subdirectory of the installation).

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 92[122]
July 2016

-Dsettings.dir=c:\mydir

The CRC will then look for the pRTI1516eCRC.settings file in the c:\mydir directory
instead.

The CRC settings editor can be found on the Windows start menu, or in the bin
sub directory of your Pitch pRTI™ installation.

Figure 65 – The CRC settings editor.

Table 6 describes the setting available for the CRC.

Parameter name Description

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 93[122]
July 2016

Parameter name Description

CRC Name A name for the CRC. This name is used to
identify your CRC when it is being
automatically discovered, but more
importantly used as a unique CRC identifier
when connecting the CRC to a booster
network.

Automatic discovery This option enables the CRC to be
automatically located by other applications
on your network. The LRC settings editor is
an example of an application using this
feature.

Mode Settings Option for setting if communication through
a booster should be used or not.

If using a booster, the booster address and
port are to be specified. Local boosters can
be automatically detected by clicking the
"Find booster"-button.

If not using a booster, "direct mode" is
specified. The port to use, and the
interface(s) to use can be specified here.

CRC Adapter The IP address(es) where the CRC is listening
to incoming connections from federates.

Adapter specification can be an exact or
partial match for adapter IP, adapter name,
or adapter description. A partial match must
be unique.

CRC Port The port number that the CRC uses to listen
for incoming connections from federates.

Booster Address The IP address to the local booster used in
Booster Mode

Booster Port The port number on the local booster used
in Booster Mode

Best-effort Method Specified whether or not to use multicast to
deliver best effort messages.

Multicast Address The multicast address used by the CRC.

Multicast Port The port number that the CRC uses to listen
for incoming connections from federates
when using multicast.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 94[122]
July 2016

Parameter name Description

CRC Save Path The directory where the CRC stores
information when the save and restore
services are used in the RTI.
${user.home } resolves to the current user’s
home directory.

Web View Service pass key An option to set a passkey required by Web
View server to be able to access the CRC.

Heartbeat/Monitor
federates using heartbeat

Check to make the CRC monitor federates
using heartbeat messaging with the LRCs.

The purpose is to detect and optionally
automatically resign federates whose
process is not responding or hanging.

Heartbeat interval The number of seconds between heartbeat
messages.

If missed Action to take when an LRC does not
respond to heartbeat messages. The options
are:

Warn in Event log – which is only a warning
and does not have any effect on the
continuation of the federation execution.

Warn + Resign after 3 misses – When an LRC
has not responded to 3 heartbeat messages
it is being automatically resigned from the
federation by the CRC.

Write event log to file Check to write the CRC event log to file in
addition to displaying it in pRTI Explorer.

Event log directory Directory where to store event logs written
to file

Event log files to keep The maximum number of event log files to
keep when writing the event log to file

Event log max file size The maximum size that an event log file may
grow to before it is being rotated to a new
file.

Check RTI version across
federation

Options for how to handle connecting LRCs
with a mismatching version. Either reject or
accept with a warning.

Table 6 – The CRC settings.

16.2 Settings for the Local RTI Component
The settings for the LRC on each federate host are modified from a graphical user
interface. To open the settings, use the command LRC Settings from the Start
menu. The LRC settings can be divided up in four categories:

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 95[122]
July 2016

 Default CRC

 Direct Mode network settings

 Booster Mode network settings

 Tuning settings

 Tuning for Direct Mode settings

 Misc Settings

 Older APIs settings

 Overrides settings

These sections provide a reference summary of all the settings that are available
but the details are described throughout this document. See chapters 14 and 15.

The LRC settings are saved in the pRTI1516eLRC.settings file in the prti1516e
directory located in your home directory. By default, all federates running on the
same computer, under the same user, use the same LRC settings.

16.2.1 Local Settings Designator files

If you want to use a special LRC setting for one federate, you may specify a Local
Settings Designator in the call to the RTI ambassador method "connect" in your
federate code. The local settings designator is an abstract reference to a set of
LRC settings to be used for overriding the default settings mentioned above.

The local settings designator file (.lsd) is used for overloading some or all of the
properties in the LRC settings file. Therefore the same LRC settings editor is being
used for editing .lsd files. When saving a file, you may choose to save it as .lsd.
Since the lsd file may only contain certain properties of the whole set of LRC
settings, there are checkboxes (labeled "enable section") for each section which is
used to set whether a set of properties are to be set in the .lsd file or not.

When specifying a local settings designator, such as "MySpecialSettings" in the
call to connect, the LRC will search for additional settings as follows:

First, it will look for a file named "MySpecialSettings.lsd" (note the file suffix) in
the in a system wide location. The system wide location is in the pRTI installation
directory on Windows, and in /etc/prti1516e on Linux and Mac OS X.

Then it will look for a file named "MySpecialSettings.lsd" in the home directory of
the current user.

Then it will look for a file named "MySpecialSettings.lsd" in the working directory
of the federate.

Any settings that it manages to read from the file in those three locations will be
overriding the default settings, and in case there are settings available in several
of these locations they will override each other in the same order as the files are
read.

If no abstract local settings designator name is specified, the LRC will look for a file
named “default.lsd”, in the same search order as above.

16.2.2 Advanced override of local settings

There are methods for doing an external override of the LRC settings and LSDs
used by your federates. This method is called the "alternate settings" and can

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 96[122]
July 2016

override everything specified at all other levels (LSD-string in connect call, .lsd
files, LRC settings file).

The alternate settings are settings parameters stored in a .lsd file just as other
special settings are.

The RTI will search for alternate settings in the following order:

1. If there is a file named "alternate.lsd" in the working directory of the
federate, the alternate settings from that file will be used.

2. If the environment variable alternate_lsd exists, its value will be used as
LSD.

3. If the Java system property alternate_lsd exists, its value will be used as
LSD.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 97[122]
July 2016

16.2.3 Default CRC

Figure 66 shows the Default CRC settings tab in the LRC Settings editor and Table 7
provides a summary of the settings available.

Figure 66 – The Default CRC settings tab.

General Parameters Description

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 98[122]
July 2016

General Parameters Description

CRC-address The CRC address can optionally be specified
here. The CRC address can also be specified
directly in the local settings designator
("crcHost=..."). This is the way that versions
prior to v 4.4 has required the address to be
set. With v 4.4 and later this can be specified
in this LRC settings field instead, so that your
federate doesn't need to handle this.

Depending on how the CRC-address is
formatted, a direct network connection
mode or a booster connection mode will be
used.

By setting the CRC-address to
hostname:port or to IP-address:port you will
use a regular, direct network connection
which is the case when not using boosters at
all.

By setting the CRC-address to CRC-
name@booster-LAN-IP:port you will use a
connection through a booster network

The button "Find local CRC" will
automatically try to find a CRC on your local
network for direct connections.

The button "Find Booster" will be able to
help you locate the local address to boosters
on your network.

Table 7 – CRC LRC settings.

16.2.4 Direct Mode network Settings

Figure 67 shows the Direct Mode settings tab in the LRC Settings editor and Table
8 provides a summary of the settings available. For a deeper discussion on
network configuration see chapter 14.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 99[122]
July 2016

Figure 67 – The LRC Settings Direct Mode tab.

Network Parameters Description

LRC Adapter Which IP address/addresses the LRC is using
for network communication. Can be set to
All, a single IP address or a specified pattern.

Adapter specification can be an exact or
partial match for adapter IP, adapter name,
or adapter description. A partial match must
be unique.

Adapter for Multicast Which network adapter to use when sending
multicast traffic. Must one and only one
adapter, i.e. All is not allowed as it is with
the LRC.adapter setting.

Advertised address of this
federate

This setting can be used to enforce the
advertisement of a specific IP-address.

When using the “Use IP address” option, a
black list of IP-addresses, interface names or
patters thereof can be defined to avoid
advertising the address of certain interfaces.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 100[122]
July 2016

Network Parameters Description

TCP Port Range The port range used by the LRC for
connecting to either the CRC or different
LRC:s.

UDP Port Range The same as TCP Port Range but for UDP.

TCP Buffer Size You may set the TCP buffer size that this LRC
will use. Note that this setting is only a
guiding setting; the buffer size is not
guaranteed to be set to the size that you
specify.

UDP Buffer Size You may set the UDP buffer size that this LRC
will use. Note that this setting is only a
guiding setting; the buffer size is not
guaranteed to be set to the size that you
specify.

Table 8 – LRC Direct Mode network settings.

16.2.5 Booster Mode network Settings

Figure 68 shows the Booster Mode settings tab in the LRC Settings editor and
Table 9 provides a summary of the settings available. For a deeper discussion on
network configuration see chapter 14.

Figure 68 – The LRC Settings Booster Mode tab.

Network Parameters Description

LRC Adapter Which IP address/addresses the LRC is using
for network communication. Can be set to
All, a single IP address or a specified pattern.

Adapter specification can be an exact or
partial match for adapter IP, adapter name,
or adapter description. A partial match must
be unique.

Table 9 – LRC network settings.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 101[122]
July 2016

16.2.6 Tuning Settings

Figure 1 shows the general Tuning settings tab in the LRC Settings editor and Table
10 provides a summary of the settings available (more tuning settings for Direct
Mode can be done in the Tuning – Direct Mode tab).For a deeper discussion on
network tuning see chapter 15.

Figure 69 – The LRC Settings Tuning tab.

Best-effort Tuning
Parameters

Description

Drop unprocessed
messages after x ms

If enabled, old messages waiting to be delivered
to the federate will be discarded when they have
reached the ages specified.

Table 10 – LRC tuning settings.

16.2.7 Tuning – Direct Mode Settings

Figure 70 shows the Tuning – Direct Mode settings tab in the LRC Settings editor
and Table 11 provides a summary of the settings available. For a deeper
discussion on network tuning see chapter 15.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 102[122]
July 2016

Figure 70 – The LRC Settings Tuning – Direct Mode tab.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 103[122]
July 2016

Best-effort Tuning
Parameters

Description

Bundle messages If enabled the RTI will bundle multiple messages
before delivering. See section 15.4.1 for details.

Max bundle size The maximum size of a bundle when Bundle
messages is checked.

Hold message no longer
than x ms

The longest time to wait before sending a
bundle, regardless of its size.

Limit outgoing data rate If enabled, the RTI will not send messages at a
rate higher then specified by the following two
parameters. See section 15.4.2 for more details.

Max. messages The maximum number of messages to send per
second when Limit outgoing data rate is
checked.

Max bandwidth The maximum send rate (in bits/s) produced by
the RTI when Limit outgoing data rate is checked.

Smooth out peaks Smoothes out large peaks of data if Limit
outgoing data rate is checked. See section 15.4.3
for more details.

Buffer size The buffer size used when Smooth out peaks is
checked.

On overflow Specifies what to do when the buffer is full and
Limit outgoing data rate is enabled.

Drop unprocessed
messages after x ms

If enabled, old messages waiting to be delivered
to the federate will be discarded when they have
reached the ages specified.

Reliable Tuning
Parameters

Description

Bundle messages If enabled the RTI will bundle multiple messages
before delivering. See section 15.4.1 for details.

Max bundle size The maximum size of a bundle when Bundle
messages is checked.

Hold messages no
longer than x ms

The longest time to wait before sending a
bundle, regardless of its size.

Limit outgoing data rate If enabled, the RTI will not send messages at a
rate higher then specified by the following two
parameters. See section 15.4.2 for more details.

Max. messages The maximum number of messages to send per
second when Limit outgoing data rate is
checked.

Max. bandwidth The maximum send rate (in bits/s) produced by
the RTI when Limit outgoing data rate is checked.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 104[122]
July 2016

Best-effort Tuning
Parameters

Description

Smooth out peaks Smoothes out large peaks of data if Limit
outgoing data rate is checked. See section 15.4.3
for more details.

Buffer size The buffer size used when Smooth out peaks is
checked.

On overflow Specifies what to do when the buffer is full and
Limit outgoing data rate is enabled.

Table 11 – LRC Tuning – Direct Mode settings.

16.2.8 Misc Settings

Figure 71 shows the Misc settings tab in the LRC Settings editor and provides a
summary of the settings available.

Figure 71 – The LRC Settings Misc tab.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 105[122]
July 2016

Misc Parameters Description

LRC Save Path The path used for save and restore

Behaviour when using Evoked
callback model

The way to handle federates with
the HLA_EVOKED process model.
The standard setting will always
wait for callbacks at least the
minimum time specified in the
evoke-call. The early return setting
will allow the evoke call to return
before the minimum time has
elapsed, as an optimization.

Enable local license Check if using a local LRC license
(see section 3.2.2 for further
explanation)

License key A license activation key for a local
LRC license

Public OR Restricted A public license can be used by any
federate if there are seats left.
A restricted license can only be used
by federates using the same license
key, if there are seats left

Table 12 – LRC Misc settings.

16.3 Older APIs settings
Figure 72 – The LRC Settings Older APIs tab shows the Older APIs settings tab in
the LRC Settings editor and provides a summary of the settings available.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 106[122]
July 2016

Figure 72 – The LRC Settings Older APIs tab

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 107[122]
July 2016

Older APIs Parameters Description

Callback model when using pre-IEEE
1516-2010 API

Callback model used by legacy
federates. Immediate or Evoked
a.k.a. “ticked” or “single threaded”

Federate name when using pre-IEEE
1516-2010 API

Older APIs do not have the concept
of federate name, and therefore it
needs to be constructed for older
API federates. Options are:

Let RTI generate name
automatically which will use the
federate type and generate a name
based on that.
Use specified name which will set
the federate name to the entered
value.

Time implementation name The IEEE 1516-2010 standard time
representation to use for older APIs
federates.

Override time classes for HLA 1.3 Time class implementation for user
defined time classes used by HLA
1.3 federates

Override time classes for HLA 1516-
2000

Time class implementation for user
defined time classes used by HLA
1516-2000 federates

16.4 Overrides settings
Figure 73 – The LRC Settings Overrides tab shows the Override settings tab in the
LRC Settings editor. It consists of a number of properties which normally are set by
the federate through API calls to the RTI. The values from those API calls can be
overridden by enabling the override of these properties and supply a value
through LRC Settings.

Pitch pRTITM User’s Guide Configuration Reference

Copyright  2016 Pitch Technologies Page 108[122]
July 2016

Figure 73 – The LRC Settings Overrides tab

16.5 LRC JVM Settings For C++ Federates

The environment variables PRTI1516_OPTIONX (where X is a number between 1 and
20) are used to pass parameters to the Java Runtime Environment when using a
C++ federate. To specify the maximum amount of memory (in this example
256Mbytes) that the Java virtual machine used by the LRC is allowed to allocate,
you would set a PRTI1516_OPTION variable like this:

set PRTI1516_OPTION2=-Xmx256m

See the java command for more information about the parameters that can be
specified.

Starting with pRTI™ version 4.4, it is also possible to use a .vmoptions file for
injecting JVM options. This is done by creating a text file named prti.vmoptions in
the working diretory of your federate. Each line in the .vmoptions file may contain
one JVM option, so make sure to put each option per line in the file.

Pitch pRTITM User’s Guide Using federates developed for Legacy HLA versions

Copyright  2016 Pitch Technologies Page 109[122]
July 2016

17 Using federates developed for

Legacy HLA versions

Pitch pRTI™ comes with backwards compatibility libraries for supporting federates
developed for the previous HLA versions, IEEE 1516-2000, IEEE 1516-2000 DLC
and HLA 1.3 (see table below).

Starting with Pitch pRTI™ v 5, the support for the legacy standard versions is
seamless and requires very little extra configuration overhead. Federates
developed for different legacy standard versions can be mixed in the same
federation, and there is no longer a need to convert monolithic FOMs of the old
formats. Therefore Pitch pRTI™ v 5 is called “multi API compliant”.

Standard Programming
language

Comment

IEEE 1516-2010 C++ a.k.a. “HLA Evolved”

IEEE 1516-2010 Java a.k.a. “HLA Evolved”

IEEE 1516-2000 C++

IEEE 1516-2000 Java

IEEE 1516-2000 DLC C++ This is a variant of the C++ API for IEEE 1516-2000 that is
designed for dynamic link compatibility.

HLA 1.3 C++

HLA 1.3 Java

To accomplish this, the installation structure has been slightly modified and the
new structure is described in this section. The additional parameters needed to
support the old APIs, such as choice of process model and logical time
representation, are now controlled by LRC settings as described in section 16.2.

Pitch pRTI™ allows federates using all these API to co-exist in the same federation

17.1 C++ Libraries
When you install Pitch pRTI™, the C++ API libraries for all standards can be found
in the lib subdirectory and the corresponding compiler specific subdirectory of
your installation. Example: Let’s say that your federate was developed for 32-bit
Visual C++ 9.0. Then you should put <pRTI install directory>\lib\vc90 on PATH, but
you don’t need to care about any API-version specific subdirectory. The vc90
subdirectory contains all available API libraries for 32-bit Visual C++ 9.0.

17.2 Headers
The include subdirectory of the installation contains the IEEE 1516-2010 API
headers, but it also contains the following subdirectories for legacy standard
headers:

 include/HLA1516-2000 contains header files for the IEEE 1516-2000
standard API.

Pitch pRTITM User’s Guide Using federates developed for Legacy HLA versions

Copyright  2016 Pitch Technologies Page 110[122]
July 2016

 include/HLA1516-2000DLC contains header files for the IEEE 1516-2000
DLC API.

 include/HLA13 contains the header files for the HLA 1.3 API.

17.3 Java libraries
The required Java library for each of the legacy standards is the same library as
recognized from the corresponding older versions of Pitch pRTI™. The one used
for IEEE 1516-2010 federates is prti1516e.jar in the lib directory of the Pitch pRTI™
installation. In that directory there is also prti.jar to be used with HLA 1.3
federates and prti1516.jar to be used with IEEE 1516-2000 federates.

Note that there are dependencies between the API library jar files and other Pitch
pRTI™ implementation libraries, and keeping them in the same directory
simplifies the CLASSPATH setting for federate users who should only care about
putting the API library on CLASSPATH.

Note that the Java library need to be on the CLASSPATH also when running C++
federates.

17.4 Time classes
The different APIs use different time classes. To make sure that the federates can
interoperate, Pitch pRTI™ provides automatic mapping between time classes in
Multi-API federations.

Note that this is mainly a concern for federations using HLA Time Management
Services.

The mappings are described in the tables below.

IEEE 1516-2010
time type

IEEE 1516-2000 DLC
time type

HLAinteger64Time
(default)

HLAinteger64Time

HLAinteger64Time LogicalTimeImplInteger

HLAfloat64Time
(default)

HLAfloat64Time

LogicalTimeDouble LogicalTimeDouble

IEEE 1516-2010
time type

IEEE 1516-2000
time classes

HLAinteger64Time
(default)

se.pitch.prti1516.time.HLAinteger64TimeFactory2000
se.pitch.prti1516.time.HLAinteger64TimeIntervalFactory2000

HLAinteger64Time hla.time1516.LogicalTimeFactoryLong
hla.time1516.LogicalTimeIntervalFactoryLong

HLAfloat64Time
(default)

se.pitch.prti1516.time.HLAfloat64TimeFactory2000
se.pitch.prti1516.time.HLAfloat64TimeIntervalFactory2000

LogicalTimeDouble se.pitch.prti1516.LogicalTimeDoubleFactory
se.pitch.prti1516.LogicalTimeIntervalDoubleFactory

Pitch pRTITM User’s Guide Using federates developed for Legacy HLA versions

Copyright  2016 Pitch Technologies Page 111[122]
July 2016

IEEE 1516-2010
time type

HLA 1.3
time classes

HLAinteger64Time
(default)

se.pitch.prti.time.HLAinteger64TimeFactory13
se.pitch.prti.time.HLAinteger64TimeIntervalFactory13

HLAinteger64Time se.pitch.prti.time.HLAinteger64TimeFactory13
se.pitch.prti.time.HLAinteger64TimeIntervalFactory13

HLAfloat64Time
(default)

se.pitch.prti.time.HLAfloat64TimeFactory13
se.pitch.prti.time.HLAfloat64TimeIntervalFactory13

LogicalTimeDouble se.pitch.prti.LogicalTimeFactoryDouble64
se.pitch.prti.LogicalTimeIntervalFactoryDouble64

Note that a single IEEE 1516-2010 time type, e.g. HLAinteger64Time, may be part
of more than one mapping. The default mapping for each Evolved time type is
marked in the tables.

Creating a federation
When a federation is created, it is assigned an IEEE 1516-2010 time type and,
potentially, a IEEE 1516-2000 DLC time type. The IEEE 1516-2000 DLC time type is
only assigned if the federation is created by a IEEE 1516-2000 DLC federate.

When an IEEE 1516-2010 federate creates a federation, it provides an IEEE 1516-
2010 time type using the timeImplementationName parameter in the call to
createFederationExecution.

When an IEEE 1516-2000 DLC federate creates a federation, it provides a IEEE
1516-2000 DLC time type using the timeImplementationName parameter in the
call to createFederationExecution. The corresponding IEEE 1516-2010 time type is
found in the time map.

When an IEEE 1516-2000 federate creates a federation, the RTI picks up an IEEE
1516-2010 time type from the LRC settings (LRC.logicalTimeForOlderApi setting).

When a HLA 1.3 federate creates a federation, the RTI picks up an IEEE 1516-2010
time type from the LRC settings (LRC.logicalTimeForOlderApi setting).

In all cases, the CRC uses the IEEE 1516-2010 time type and the
LogicaltimeFactoryFactory to locate the corresponding IEEE 1516-2010
LogicalTimeFactory.

Joining a federation
When an IEEE 1516-2010 federate joins a federation, it uses the IEEE 1516-2010
time type of the federation and the LogicaltimeFactoryFactory to locate the
corresponding IEEE 1516-2010 LogicalTimeFactory.

When a IEEE 1516-2000 DLC federate joins a federation, it uses the IEEE 1516-
2000 DLC time type, if provided at create, otherwise the IEEE 1516-2010 time type
is used to look up an IEEE 1516-2000 DLC time type. The IEEE 1516-2000 DLC time
type is then used to look up matching IEEE 1516-2000 time classes in the time
map. The IEEE 1516-2000 DLC time type is also used on the C++ side in a call to
LogicalTimeFactoryFactory::makeLogicalTimeFactory. The IEEE 1516-2000 time
and interval classes, as well as the IEEE 1516-2000 DLC time type can be
overridden in LRC settings.

Pitch pRTITM User’s Guide Using federates developed for Legacy HLA versions

Copyright  2016 Pitch Technologies Page 112[122]
July 2016

When a IEEE 1516-2000 federate joins, it uses the IEEE 1516-2010 time type of the
federation to look up a time mapping. The mapping contains class names for the
IEEE 1516-2000 time and interval factory. The IEEE 1516-2000 time and interval
classes can be overridden in LRC settings. Note that the RTI actually ignores the
time and interval classes provided in the MobileFederateServices parameter to the
joinFederationExecution call.

When a Java IEEE 1516-2000 federate joins, it uses the IEEE 1516-2010 time type
of the federation to look up a time mapping. The mapping contains class names
for the Java IEEE 1516-2000 time and interval factory. The Java IEEE 1516-2000
time and interval classes can be overridden in LRC settings. Note that the RTI
actually ignores the time and interval classes provided in the
MobileFederateServices parameter to the joinFederationExecution call.

When a C++ IEEE 1516-2000 federate joins, it uses the IEEE 1516-2010 time type
of the federation to look up a time mapping. The mapping contains class names
for the Java IEEE 1516-2000 time factory and the IEEE 1516-2000 interval factory
which are used by the LRC. The IEEE 1516-2000 time and interval classes can be
overridden in LRC settings. The RTI uses the C++ time classes provided in the call
to joinFederationExecution.

When a HLA 1.3 federate joins, it uses the IEEE 1516-2010 time type of the
federation to look up a time mapping. The mapping contains class names for the
HLA 1.3 time factory and the HLA 1.3 interval factory. The HLA 1.3 time and
interval classes can be overridden in LRC settings. Note that the RTI actually
ignores the time and interval classes provided in the MobileFederateServices
parameter to the joinFederationExecution call.

When a C++ HLA 1.3 federate joins, it uses the IEEE 1516-2010 time type of the
federation to look up a time mapping. The mapping contains class names for the
Java HLA 1.3 time and interval factory. The HLA 1.3 time and interval classes can
be overridden in LRC settings. The RTI uses the C++ time classes provided in the
call to joinFederationExecution.

17.5 Data Distribution Management (DDM) Services
The Multi-API support in Pitch pRTI™ handles the differences in DDM between
different APIs automatically to a certain extent. DDM in HLA 1.3 differs from the
later standards in that it uses routing spaces.

Note that this is only a concern for federations using HLA DDM Services.

Federations created using HLA 1.3 FED
If a federation is created using HLA 1.3 FED file, the routing spaces and their
respective dimensions are converted to IEEE 1516-2010 dimensions named as
follows:

<routing space name>::<dimension name>

For example, if the HLA 1.3 FED defines a routing space named “RS1” with the
dimensions “X” and “Y”, we will get the IEEE 1516-2010 dimensions named
“RS1::X” and “RS1::Y”. The RTI will keep track of the HLA 1.3 routing spaces and
dimensions and provide them to HLA 1.3 federates.

Pitch pRTITM User’s Guide Using federates developed for Legacy HLA versions

Copyright  2016 Pitch Technologies Page 113[122]
July 2016

Federations created using a FOM (IEEE 1516-2010 or IEEE 1516-2000)
If a federation is created by an IEEE 1516-2010, IEEE 1516-2000 or IEEE 1516-2000
DLC federate which is using a FOM for creating, the routing space information will
not be automatically available for HLA 1.3 federates. There simply is no such
information in the FOM.
To deal with this, a mapping from IEEE 1516-2010/2000 dimension name to HLA
1.3 routing space and dimension have to be added to the LRC settings file.
It is added using the text editing tab, and each line for this mapping shall look like
this:

hla13dimension_<IEEE 1516 dimension name> = <routing space name>::<HLA 1.3 dimension name>

For example, if the IEEE 1516-2010/2000 FOM has a dimension named “Dim1”,
we can map this dimension to HLA 1.3 routing space “RS” and dimension “X” with
this entry in the LRC settings file:

hla13dimension_Dim21 =RS::X

17.6 Quick reference
The document prti_federate_quick_start.pdf, which can be found in the docs
subdirectory of the Pitch pRTI™ installation directory, contains details of how to
setup PATH and CLASSPATH for each compiler type.

Pitch pRTI™ User’s Guide Common errors

Copyright  2016 Pitch Technologies Page 114[122]
July 2016

18 Common errors

This section lists common error messages along with solutions to each error.

18.1 Compiling C++ Federates
Problem: I get the following error when I try to compile my federate in MS Visual
Studio.

libcpd.lib(xmbtowc.obj) : error LNK2001: unresolved external symbol __CrtDbgReport
Chat.exe : fatal error LNK1120: 1 unresolved externals
Error executing link.exe.

Reason: You probably have not set the run-time library correctly in the project
settings. See section 9.1.

Problem: I get the following error when I try to compile my federate in MS Visual
Studio:

BaseFederateAmbassador.obj : error LNK2001: unresolved external symbol "public: virtual __thiscall
RTI::FederateAmbassador::~FederateAmbassador(void)"
(??1FederateAmbassador@RTI@@UAE@XZ)

Reason: Make sure that you have added the librti1516e.lib library file in the
project settings. See section 9.1.

Pitch pRTI™ User’s Guide Common errors

Copyright  2016 Pitch Technologies Page 115[122]
July 2016

Problem: When I try to compile my federate using MS Visual Studio, I get the
following warning:

warning C4541: 'dynamic_cast' used on polymorphic type 'class RTI::LogicalTime' with /GR-;
unpredictable behaviour may result

Reason: Make sure that you have enabled run-time type information for your
project. See section 9.1 for more information.

18.2 Compiling Java federates
Problem: When I try to compile my Java federate I get the following errors (among
others):

Chat.java:1: package hla.rti1516 does not exist
import hla.rti1516e.*;
^

Reason: The compiler cannot find the prti1516e.jar file. Make sure you have the
file available on your CLASSPATH. See section 9.5.2 for more information.

18.3 Starting Pitch pRTI™

Problem: I try to start Pitch pRTI using the command prompt but I get the
following error message:

C:\Program Files\prti1516e>java se.pitch.prti1516e.RTIexec
Exception in thread "main" java.lang.NoClassDefFoundError: se/pitch/prti1516e/RTIexec

Reason: The file prti1516e.jar was not found by Java. Make sure the file is
available on the CLASSPATH. See section 9.5.2 for more information.

Problem: I try to start Pitch pRTI but I get the following message:

RTIexec for pRTI(tm) 1516 v4.2 for IEEE 1516
Copyright (c) 2000-2010 Pitch Technologies AB, http://www.pitch.se

Enterprise Edition, licensed to Pitch Internal Development.
Could not start CRC listening on port 8989. Check if another instance of
pRTI is already executing or reconfigure the CRC port number.
Failed to initialize RTI.
Shutting down

Reason: Another instance of Pitch pRTI™ is already running on this machine. Try
starting Pitch pRTI™ using a different port number if you need several instances
running on the same machine. See section 16.1 for more information.

Problem: When I try to start my federate I get the following error message:

Incompatible version (909111111)
hla.rti1516e.RTIinternalError: Incompatible version (909111111)

Reason: The LRC and CRC you are using are different versions. Make sure that you
use the same version for the CRC and all your LRC:s.

Problem: When I try to start my federate I get the following message:

Can't connect to RTIexec host. (909067002)
hla.rti1516e.RTIinternalError: Can't connect to RTIexec host. (909067002)

Pitch pRTI™ User’s Guide Common errors

Copyright  2016 Pitch Technologies Page 116[122]
July 2016

Reason: The federate could not connect to the RTI. This is probably because there
is no CRC running on the specified IP address, or because the federate cannot
connect to the specified address.

Problem: When I try to start my federate I get the following error:

Exception in thread "main" java.lang.NoClassDefFoundError:
se/pitch/prti1516e/FederateAmbassadorImpl

Reason: The jar file containing the Pitch pRTI™ classes (prti1516e.jar) could not
be found. Make sure that it is available on the CLASSPATH.

Problem: When I try to start my C++ federate I get a dialog with the following text:

This application has failed to start because rti1516e.dll was not found. Re-installing the application
may fix the problem

Reason: The file librti1516e.dll could not be found. Make sure that you have this
file on your PATH or that the file is located in the same directory as the executable
file of your federate.

18.4 Running C++ Federates
Problem: Starting a federate built with MS Visual C++ 8 or 9 fails with the error
message “The application could not be initialized”.

Reason: MS .net framework is not installed and required by applications built with
Visual C++ 8 or 9. For hosts that do not have MS Visual Studio installed, the MS
.net framework redistributable package needs to be downloaded from Microsoft
and installed.

Problem: I'm using MS Visual Studio. My federate tries to send an interaction or
receives an interaction from another federate. When either of these two events
occur, a debug assertion fails with the following expression:

_CrtIsValidHeapPointer(pUserData).

Reason: Make sure that you have set the correct run-time library in your project
settings. See section Error! Reference source not found. for more information.

Pitch pRTI™ User’s Guide Common errors

Copyright  2016 Pitch Technologies Page 117[122]
July 2016

18.5 Federation Startup
Problem: When I try to create the federation execution I get this error message:

null: line: 227 col: 29 expected: < found: eof004241E0

Reason: You are probably using a FOM file with the wrong extension or format.
When running an IEEE 1516 federation the FOM file must be an XML file.

Problem: I try to create the federation but I get the following error message:

Unable to open FDD file (909056001)

Reason: The FOM file specified in the create call was not found. Check the path
and the name of the specified file.

Problem: When I try to join a federation I get the following error message:

Federation execution does not exist (909029001)

Reason: The federation execution has not been created. Before you can join the
federation it must be created. Make sure that you try to create the federation and
check the CRC host address and port specified in the create call.

Problem: When I try to join my federate I get the following message:

Unable to join federation, error when connecting to other joined federates (909056008)

Reason: When a federate joins a federation execution, it establishes a connection
with every other currently joined federate. If this fails for some reason, the error
message above is displayed. There can be several reasons why this occurs.
Federates behind firewalls is one common cause. When using Linux, this error is
fairly common because of the following networking issue:

When Pitch pRTI™ determines the IP address of the machine where a federate is
running, it uses the Java function InetAddress.getLocalHost(). On Red Hat Linux
installations, this function may return an InetAddress corresponding to the
loopback address (127.0.0.1). This means that the federate informs the other
federates that it is running at IP address 127.0.0.1, instead of the actual IP address
of the machine. To fix this problem, edit the file /etc/hosts in your Red Hat
installation, and make sure that you enter the correct IP address of the host
instead of 127.0.0.1.

Important Note: If you are running Windows XP, be aware that it contains a built
in firewall. If you are experiencing this problem when running Windows XP check
if the firewall is enabled. This can be done by first right-clicking on My Network
Places in the Start Menu and selecting Properties. Then right-click on your
network connection and select Properties again. Select the Advanced tab in the
resulting window as shown in Figure 74.

Pitch pRTI™ User’s Guide Common errors

Copyright  2016 Pitch Technologies Page 118[122]
July 2016

Figure 74 – Disabling Internet Connection Firewall on Windows XP.

To disable the firewall simply click the Settings button and turn off the firewall.

18.6 Get handles and register object instances
Problem: When I try to get handles for my federate I get the following error
messages:

getInteractionClassHandle (909001001)

getObjectClassHandle (909001001)

Reason: This might indicate that the federate has not joined the federation
execution correctly. Before any further operations can be performed the federate
must join a federation execution. Make sure that you try to join a federation and
check the name of the federation to join specified in the join call. Also check that
the federation execution exists.

Problem: I try to get handles for the object class Position, interaction class Trigger,
attribute zcoord and parameter timeout but I get the following error messages:

getObjectClassHandle Position (909149038)

getInteractionClassHandle Trigger (909149037)

Attribute zcoord not known. (909082002)

Parameter timeout not known. (909145002)

Reason: Position, Trigger, timeout and zcoord are not defined in the FOM file. All
data used in the federation must be defined in the FOM file.

Pitch pRTI™ User’s Guide Common errors

Copyright  2016 Pitch Technologies Page 119[122]
July 2016

Problem: I get the following error when I try to register an object and when I try to
get an attribute handle of a certain object class:

Object class cannot be null
java.lang.NullPointerException: Object class cannot be null

Reason: You have probably not obtained the object class handle correctly. Make
sure that you get the object class handle before you try to register any object
instance or get any attributes of that class.

Problem: I try to register an object but I get the following error message:

RegisterObjectInstance: Object class not published (909087001)

Reason: Before you are allowed to register an object you must publish that object
class. Make sure that the object class and attributes are published correctly.

Problem: I try to register an object instance with a specified name but I get the
following error:

hla.rti1516.ObjectInstanceNameNotReserved: Fred (909000000)

Reason: The HLA 1516 standard requires that you reserve the object instance
name before you register it. This is done with the reserveObjectInstanceName
method, e.g.:

_rtiAmbassador.reserveObjectInstanceName(instanceName);

Note that you then must wait for the CRC to grant you reservation. The CRC will
invoke the callback objectInstanceNameReservationSucceeded or
objectInstanceNameReservationFailed depending on the result.

Pitch pRTI™ User’s Guide Common errors

Copyright  2016 Pitch Technologies Page 120[122]
July 2016

Problem: I get the following error messages when I try to get a parameter or an
attribute handle:

Interaction Class Handle is null

Object Class Handle is null (909001001)

(909001001)

Reason: The interaction/object class handle that you send along with the get
parameter/attribute handle call is probably not initialized. Make sure to get your
interaction and object handles correctly before you get your parameter and
attribute handles.

18.7 Updates and interactions

Problem: I get one of the following errors when I try to update an object instance:

Unknown object id 0 (909151008)004241E0

Object instance handle cannot be null
java.lang.NullPointerException: Object instance handle cannot be null

Reason: The object instance is probably not registered correctly. Make sure that
the object class name is correct and that the registration is done before updating
the instance attributes.

Problem: I get the following error when I try to update and delete an object
instance:

Object Not Known, id = 115 (909147003)

Reason: The object instance does no longer exist in the federation. It has probably
been deleted.

Problem: When I try to update an object instance I get the following error
message:

UpdateAttributeValues: Attribute<name, 143, NotAcquiring 2 51> attribute not owned (909152021)

Reason: The attributes you try to update are not owned by your federate. Make
sure that it is the right object attributes you are updating. If the object instance is
not registered by your federate you must request ownership of its attributes
before you are allowed to update them.

Pitch pRTI™ User’s Guide Common errors

Copyright  2016 Pitch Technologies Page 121[122]
July 2016

Problem: When I update attributes I get the following error message:

Connection reset by peer: socket write error
java.net.NoRouteToHostException: No route to host: Datagram send failed

Reason: The local LRC is unable to connect to the remote LRC. Typically, the
remote LRC cannot be reached because of an intervening firewall, or
because an intermediate router is down.

18.8 Time management
Problem: I’m using time management in my federate and
enableTimeConstrained() works fine, but after that I cannot receive any
interactions or updates.

Reason: If your federate is time constrained you must call
_rtiAmbassador->enableAsynchronousDelivery() in order to get receive order
interactions and updates at any time.

Problem: When I try to advance time in my federate I get the following exception:

Time Advance Already InProgress (909128003)004262F8

Reason: Your federate has already tried to advance time and has still not obtained
a grant for that request. You have to wait for a grant before you can make a new
request.

Problem: When I try to update an attribute with a time stamp I get the following
error message:

Invalid federation time (909152011)004262F8

Reason: The time stamp you have given in the update call is not valid. It is
probably lower than some federate’s logical time.

18.9 Miscellaneous
Problem: The federation performance is very low. Earlier the federation has run
much faster!

Reason: Check if the tracing is activated. The tracing is very useful but might also
reduce the federation performance significantly.

Problem: Sometimes my callback seems to get lost. My code looks like this:

1 _rtiAmbassador.reserveObjectInstanceName(name);
2 synchronized (_reservationSemaphore) {
3 try {
4 _reservationSemaphore.wait();
5 } catch (InterruptedException e) {
6 }
7 }
8 System.out.println("Reservation completed");

The callback looks like this:

Pitch pRTI™ User’s Guide Common errors

Copyright  2016 Pitch Technologies Page 122[122]
July 2016

void objectInstanceNameReservationSucceeded(String name) {
 synchronized (_reservationSemaphore) {
 _reservationSemaphore.notify();
 }
}

From time to time, the program gets stuck at the wait() method and never reaches
the print statement.

Reason: This is a common mistake in multi-threaded programming. What happens
is that the callback is delivered before line 2 is executed, i.e. before the caller has
synchronized the semaphore. Instead, the callback synchronizes the semaphore
and calls notify. After the callback has terminated, the caller continues at line 3
where it synchronizes the semaphore and calls wait. This call will never terminate
since the callback has already happened.

Solution: Make sure that the caller synchronizes the semaphore before calling
the RTI.

1 synchronized (_reservationSemaphore) {
2 try {
3 _rtiAmbassador.reserveObjectInstanceName(name);
4 _reservationSemaphore.wait();
5 } catch (InterruptedException e) {
6 }
7 }
8 System.out.println("Reservation completed");

Problem: I am experiencing packet loss, missing callbacks and instable behavior
on a computer with local firewall software.

Reason: Unless you explicitly configured the firewall and the RTI to allow traffic on
certain ports, you should not put a firewall in between or on computers in a
federation. Disable or remove the firewall to verify that this is indeed the
problem. See chapter 14 on how to configure the Pitch pRTI™ when operating
with firewalls.

	1 Introduction
	1.1 About This Document
	1.2 About Pitch Technologies
	1.3 About IEEE 1516 HLA
	1.4 About the Run Time Infrastructure
	1.5 About Pitch pRTI™
	1.6 Product Licensing Structure

	2 Preparing for Pitch pRTI™
	2.1 A Topology and Components Example
	2.2 The Central RTI Component (CRC)
	2.3 The Federates
	2.4 The Local RTI Component (LRC)
	2.5 FOM Files
	2.6 The Computers
	2.7 Networking
	2.8 Powerful User Interfaces

	3 Installing Pitch pRTI™
	3.1 Windows Installation
	3.2 Activating licenses
	3.2.1 The license Activator Tools
	3.2.2 License Activation Modes

	3.3 Verifying the Windows Installation
	3.4 Linux Installation
	3.5 Verifying the Linux Installation
	3.6 Installing on Other Platforms

	4 Uninstalling Pitch pRTI™
	4.1 Uninstalling on Windows
	4.2 Uninstalling on Linux
	4.3 Uninstalling on Other Platforms

	5 Running Pitch pRTI™
	5.1 Graphical User Interfaces Overview
	5.2 Using the Graphical User Interface
	5.2.1 Version
	5.2.2 Settings
	5.2.3 Environment
	5.2.4 License
	5.2.5 Event Log
	5.2.6 Federation Overview
	5.2.7 Federation Object Model (FOM)
	5.2.8 Object Instances
	5.2.9 Time Graph
	5.2.10 Synchronization Points
	5.2.11 Network Info
	5.2.12 Federate Information and Tracing

	5.3 Using the command line interface

	6 Running Pitch pRTI™ In Service-Mode
	6.1 Introduction
	6.2 Limitations
	6.3 Installing the Service
	6.3.1 Service Management on Windows
	6.3.2 Service Management on Linux
	6.3.3 Logging

	7 Using Pitch Web View
	7.1 Introduction

	8 Pitch Control Center
	8.1 Overview
	8.2 Friendly Errors
	8.3 LRC Monitoring

	9 Developing with Pitch pRTI™
	9.1 Microsoft Visual Studio 2010 on Windows
	9.1.1 Creating a New Project
	9.1.2 Settings Under the C/C++ Folder
	9.1.3 Settings Under the Linker Folder

	9.2 Optimization flags for Visual Studio release builds
	9.3 Running federates from the Visual Studio IDE
	9.4 Other Microsoft Visual Studio versions on Windows
	9.5 GCC on Linux
	9.5.1 Modifying the Makefile
	9.5.2 Adding prti1516e.jar to the CLASSPATH
	9.5.3 Modifying the library search path

	9.6 Custom signal handlers in C++
	9.7 Java

	10 Writing a simple federate in C++
	10.1 The FederateAmbassador and the RTIambassador
	10.2 Connecting to the RTI
	10.3 The Federation Object Model
	10.4 Publishing and Subscribing to Information
	10.5 Sending Interactions
	10.6 Receiving Interactions
	10.7 Conclusions

	11 Writing a Simple Federate in Java
	11.1 The FederateAmbassador and the RTIambassador
	11.2 Connecting to the RTI
	11.3 The Federation Object Model
	11.4 Publishing and Subscribing to Information
	11.5 Sending Interactions
	11.6 Receiving Interactions
	11.7 Conclusions

	12 Tick and Process Models
	12.1 Setting the process model
	12.2 Practical Guidelines
	12.3 Explanation of Process Models

	13 Debugging and Tracing
	13.1 Overview
	13.2 Enabling the Tracing
	13.3 Format of the Trace Log
	13.4 A Sample Trace Log

	14 Networking
	14.1 When to Reconfigure Networking
	14.2 Overview of Pitch pRTI™ Communication
	14.3 Using Multicast
	14.4 Operating over Firewalls
	14.5 Network Settings
	14.6 Pitch pRTI™ and Pitch Booster™
	14.6.1 Configuring the LRC and CRC for Pitch Booster™

	15 Advanced Pitch pRTI™ Network Performance Tuning
	15.1 Introduction
	15.2 Federate Tuning
	15.3 Setting Tuning Parameters
	15.3.1 Using Presets
	15.3.2 Advanced Tuning

	15.4 Pitch pRTI™ Tuning Algorithms
	15.4.1 Algorithm A – Bundling
	15.4.2 Algorithm B and C – Limit Bandwidth Usage
	15.4.3 Algorithm B – Smooth Out Peaks
	15.4.4 Algorithm C – Drop Best-Effort Messages or Block Sender
	15.4.5 Algorithm D – Block Sending of Reliable Messages or Produce Warning
	15.4.6 Algorithm E – Drop Old Incoming Best-Effort Messages

	16 Configuration Reference
	16.1 Settings for the Central RTI Component
	16.2 Settings for the Local RTI Component
	16.2.1 Local Settings Designator files
	16.2.2 Advanced override of local settings
	16.2.3 Default CRC
	16.2.4 Direct Mode network Settings
	16.2.5 Booster Mode network Settings
	16.2.6 Tuning Settings
	16.2.7 Tuning – Direct Mode Settings
	16.2.8 Misc Settings

	16.3 Older APIs settings
	16.4 Overrides settings
	16.5 LRC JVM Settings For C++ Federates

	17 Using federates developed for Legacy HLA versions
	17.1 C++ Libraries
	17.2 Headers
	17.3 Java libraries
	17.4 Time classes
	17.5 Data Distribution Management (DDM) Services
	17.6 Quick reference

	18 Common errors
	18.1 Compiling C++ Federates
	18.2 Compiling Java federates
	18.3 Starting Pitch pRTI™
	18.4 Running C++ Federates
	18.5 Federation Startup
	18.6 Get handles and register object instances
	18.7 Updates and interactions
	18.8 Time management
	18.9 Miscellaneous

